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REMARKS ON d-ARY PARTITIONS AND AN APPLICATION
TO ELEMENTARY SYMMETRIC PARTITIONS

Mircea Cimpoeas' and Roxana Tanase?

We prove new formulas for py(n), the number of d-ary parti-
tions of n, and, also, for Py(n), its polynomial part.

Given a partition A = (A1, ..., ), its associated j-th symmetric elemen-
tary partition, pre;()), is the partition whose parts are {\i; ---Ai; + 1 <
ih < oo <15 < L}, We prove that if X and p are two d-ary partitions
of length € such that pre;(\) = pre;(u) and Ai, -+ Ni; = i, -+ pi;, for all
1<dy <<y <UL, then A = p.
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1. Introduction

Let n be a positive integer. We denote [n| = {1,2,...,n}. A partition of
n is a non-increasing sequence of positive integers A\; whose sum equals n. We
define p(n) as the number of partitions of n and we define p(0) = 1. We denote
A= ()\1,)\2,...,)\4) with )\1 Z)\Q Z 2)\62 1 and |)\| = )\1+—|—)\g:n
We refer to |A| as the size of A and the numbers \; as parts of A\. The number
¢(X\) = £ is the number of parts of A and it is called the length of A. For more
on the theory of partitions, we refer the reader to [1].

Let d > 2 be an integer. A partition A = (Aq,...,\,) is called d-ary, if
all \;’s are powers of d. A 2-ary partition is called binary. In Proposition 3.3
we establish a natural bijection between the set of all integer partition and the
set of d-ary partitions, which conserves the length (but not the size).

In Theorem 3.5 we give a new formula for pg(n), the number of d-ary
partitions of n, using the fact that a d-ary partition is a partition with the parts
in {1,d,d? d*, ...}. In Theorem 3.6, we give a new formula for W;(d,n)’s, the
Sylvester waves of pg(n). Also, in Theorem 3.7 and Theorem 3.8 we give new
formulas for P,;(n) = Wi(d,n), the polynomial part of ps(n). In Example 3.9,
we illustrate these results.
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Now, let K be an arbitrary field and S = KJz1,..., x| be the ring of
polynomials over K in ¢ indeterminates. We recall that the j* elementary
symmetric polynomial of S is

ej(xy,...,xy) = Z Ty Xy - -+ Ty, Where 1 < j < /.
1< <io<...<i; <L
Also, we define eg(z1,...,2¢) = 1 and e;(zy,...,24) = 0 for j > L.
Given a partition A, we have e;(\) = 0 if /(\) < j and
e;(\) = > XAy -+ Ay, iE 1< § < L(N).

1<i1 <2 <. <i; <U(N)

In [2, 3], Ballantine et al. introduced the following definition. Given a partition
A, the partition prej(A) is the partition whose parts are

Dy i 1 1<y <ig <o <iy <L)},

and they called it an elementary symmetric partition. Note that pre;(\) = A,
but pre;(A) # A, for j > 2. For example, if A = (3,2,1,1), then prey()\) =
(6,3,3,2,2,1).

A natural question to ask is the following: If A and p are two partitions
such that pre;(\) = pre;(u) then is it true that A = p? Only the following
cases are known in literature: (i) j = 2 and m(X), m(u) < 3, see [3, Proposition
14] and (ii) j = 2 and A and p are binary partitions; see [3, Proposition 15]. In
Theorem 4.2 we prove that if A and p are two d-ary partitions of length ¢ such
that pre;(\) = pre;(p) and Ay, -+ Aij = gy - pij, forall 1 <iy < - <dy <
where 1 < 7 </ —1, then A = pu.

%

2. Preliminaries

Let a := (ay,as,...,a,) be a sequence of positive integers, where r > 1.
Let A be a partition. We say that A has parts in a if \; € {a4,...,q,} for all
1<i<lN).

The restricted partition function associated to a is p, : N — N, pa(n) :=
the number of integer solutions (z1,...,z,) of >._, a;z; = n with z; > 0. In
other words, pa(n) counts the number of partitions of n with parts in a. Note
that the generating function of p,(n) is

nzzopa(n)z”: (1_Za1>.%.(1_za7-)' 2.1)

Let D be a common multiple of ay, as,...,a,. Bell [5] proved that p,(n) is a
quasi-polynomial of degree k — 1, with the period D, that is
pa(n) = daj_1 ()Nt + -+ da1(n)n + dap(n), (2.2)

where dam(n+ D) = dam(n) for 0 < m < k—1and n >0, and day_1(n) is
not identically zero.
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Sylvester [9],[10] decomposed the restricted partition in a sum of “waves”:
n) =S Win,a) (2.3
j=1
where the sum is taken over all distinct divisors j of the components of a and
showed that for each such j, W;(n,a) is the coefficient of ¢! in

—vn nt

> =
o val —qqt . UGk __qit)?
0<v<j, ged(v,j)=1 (1= pf*temat) - (1 = pj*remat)
where p; = e’7 and ged(0,0) = 1 by convention. Note that W;(n,a)’s are
quasi-polynomials of period j. Also, Wi(n,a) is called the polynomial part of
pa(n) and it is denoted by Pa(n).

Theorem 2.1. ([6, Corollary 2.10]) We have

r—1

=ty Jf(rme )

OSjlﬁgfl,...,Onggg,l =1
a1 j1+-+arjr=n( mod D)

The unsigned Stirling numbers are defined by

(171 - (e oo []) e

Theorem 2.2. ([7, Proposition 4.2|) For any positive integer j with jla; for
some 1 <1 <r, we have that

k
W' -1 k—m—+1 %
) = ';;%;l[kﬂ]( e
x 3 D~ (ayjy + -+ + apj,) T Hnm L
0<i< o105 < 2 -1
a1j1+-+arjr-=£( mod j)
Theorem 2.3. ([6, Corollary 3.6]) For the polynomial part Pa(n) of the quasi-
polynomial pa(n) we have
r—1

Pa(n)zﬁ Z H(n—aljl_D..._arjr_i_g).

0<ji< 21,0, < 2 -1 £=1

The Bernoulli numbers B,’s are defined by eti = ;OO Ui Bg We have
Bozl,Blz—%, B2:%, B4:—% and B,, =0isnis odd and n > 1.
Theorem 2.4. (6, Corollary 3.11] or [4, page 2]) The polynomial part of pa(n)
18

r—1 B B
ip " P g ir, T—1—u
Pa( r—l—u) Z —21|ZT| a/ll"'arn .
" u=0 i1+ Fir=u
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3. New formulas for the number of d-ary partitions

We fix d > 2 an integer. We denote P, the set of integer partitions, and
P4, the set of d-ary partitions. Given a positive integer n, we denote py(n),
the number of d-ary partitions of n.

Definition 3.1. Let A = (Ay,..., ) € P be a partition. The d-exponential of
A s the d-ary partition:
Expy(A) := (dM71, ... dMh).

Definition 3.2. Let A = (A1,...,\) € Py be a d-ary partition. The d-
logarithm of X\ is the partition:

Logy(A) == (logg(A1) + 1,...,logz(Ae) + 1).

Proposition 3.3. The maps Exp,; : P — P4 and Log, : Py — P are bijective
and inverse of each other.

Proof. Let X = (\,...,\) € P. We have Exp,(\) = (dM~1, ... d*~1). Since
log (d¥ N +1=N—-14+1=Nforalll1<i</,

it follows that Log,(Exp,(\)) = A. Similary, if 4 € P4 is a d-ary partition, then
it is easy to see that Exp,(Log,(i)) = pu. Hence, the proof is complete. O

Lemma 3.4. Let n and k be two positive integers such that n < d***. The
number of d-ary partitions of n is

pa(n) = p(l,d,...,d’“)(n)'
In particular, the polynomial part of ps(n) is Py(n) = Py q.. a)(n).

Proof. Let A = (A1,...,Ar) be a d-ary partition of n, that is n = |A|. It
follows that \; = d% with 0 < ¢; and d% < n for all 1 < ¢ < ¢. Since
A =d < |\ <d¥tand Ay > Ny > - > ), it follows that

k>c>cp>-->c >0,

and, therefore, \ is a partition with partsin (1,d,...,d*). On the other hand,
any partition with parts in (1,d,...,d") is a d-ary partition. Hence, the proof
is complete. 0

Theorem 3.5. Let n and k be two positive integers such that n < d*+t'. The
number of d-ary partitions of n is

k

1 n—ji—jod— - — jpd"!
pd(n)zg Z H( ! 7 +7).

0<j1<dF—1, 0<jo<db 1, ..., 0<p <d—1 =1
J1+jad4Fjrd*~1=n( mod d¥)

Proof. According to Lemma 3.4, we have py(n) = pg .. q)(n), where k =
|log,(n)|. Hence, the conclusion follows from Theorem 2.1, taking r = k + 1
and D = lem(1,d, ..., d") = d. 0
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From Lemma 3.4 and (2.3) we can write
n) = ZWj(d, n), where W;(d,n) = Wj(n, (1,4, ...,d")),
Jj=1
and k = |log,(n)|. In particular, the polynomial part of py(n) is
Py(n) = Wi(d,n).

Theorem 3.6. Let n and k be two positive integers such that n < d*1. We
have that

1 L "okt o
i = gz 3 3 [, )

X Z d ( +dj2 + . +dk 1, )s—m—l—lnm—l‘

0<j1<dF—1,...,0<j, <d—1
Ji+dja+-+d*~1j,_1=¢( mod j5)

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.2. U

Theorem 3.7. Let n and k be two positive integers such that n < d**'. The
polynomial part of pg(n) is

1 n—ji—jod— - — jpd"?

0<j1<dr 1, 0<jo<dk—1-1, ....0<j, <d—1 =1

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.3. O

Theorem 3.8. Let n and k be two positive integers such that n < d**t'. The
polynomial part of pg(n) is

k
1 (_1)u Bil v sz . gtk —
n ‘7--4-1:[524‘213 klkJrlnk ’LL.
a( ) lk(’ﬂ;l);(k_ul Z (SERRRETARY

Dt tigpi=u
Proof. The conclusion follows from Lemma 3.4 and Theorem 2.4. U
Example 3.9. (1) Let n = 8 and d = 3. Since n < d'*!, Theorem 3.5 implies

1 8 —ji 8—2
Ps(8) = 4 > ( 2 +1> ——t1=3

1 0<51<2, j1=8( mod 3)

Also, from Theorem 3.7 it follows that the polynomial part of p3(8) is

2
—i ) ! 1141049 10
B =1y 312< #1) =g g = P =

Jj1=0 j1=0

(2) Let n = 20 and d = 3. Since n < d**!, Theorem 3.5 implies

1 . , , ,
p3(20) = 62 > | (29 = j1 — 372)(38 — j1 — 3j2).
0<71<8, 0<j2<2
j1+37j2=20( mod 9)
Since the set of pairs (j, jg) which satisfy the above conditions is {(2,0), (8,1), (5,2)},

it follows that ps(20) = 755(28 - 36 + 18- 27 + 18 - 27) = 12.
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4. An application to elementary symmetric partitions

Given n > 2 an integer, we denote by {ey,...,e,}, the standard basis of
the vector space R", i.e. ¢; is the vector with 1 in the i-th position and zeros
everywhere else.

Let 1 < j <n —1 be an integer. We consider the vectors:

er+ex+ - +ey, i=1
CGi=43€e1+e+--+e1—€n, 2<i1<7+1
€ijy1 T €ijyo+---+e, J+2<i<n
Let C' be the n x n matrix whose columns are ¢y, ¢y, ..., cp.

To better illustrate the structure of the matrix C', we present the case
n==6and j = 3:

101100
110100
111010
0_011111
000O0T1T71
000O0O0T1

Lemma 4.1. With the above notations, we have that det(C') = j.
Proof. From the definition of C, we easily note that det(C) = det(A), where

ro1 -1
110 --- 1
A=t
111 --- 0
o11 -1

isa (j+ 1) x (j+ 1) circulant matrix with the associated polynomial
flx)y=1+a+2>+ - 4271
For more detauils2 on circulant matrices, we refer the reader to [8].
Let w = ei+1 be a primitive (j + 1)-th root of unity. Using a basic result
on circulant matrices, we have that det(A) = [[]_, f(w").

It is clear that f(w®) = f(1) = j. On the other hand, for 1 < k < j, we
have that f(w*) =1+ wF + -+ + W=D = —wk . Therefore, it follows that

det(A) = (—1) juw "%

If 7 is even, then
2G+1 i1y 22 2

w 2 = (w]—"_l)? = 17 = 1
On the other hand, if j is odd, then
WER (WY (C1) = -1
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Hence, in both cases, we have that det(A) = j. Thus, the proof is complete. [

Theorem 4.2. Let A and p be two d-ary partitions with ¢ parts and let 1 <
j <€ —1 be an integer. If pre;(A) = pre;(u) and and i, -+ Nij = fiy, -+ i,
foralll <ip <---<i; <L, then A = pu.
Proof. Since A is a d-ary partition, it follows that A = (Ay, Ag, ..., A¢) such that
Ni=d forall 1 <i</l and c¢; > ¢y > -+ > ¢ Similarly, p = (pg, ..., )
with y; = d%, for all 1 <i </, and ¢; > ¢y > -+ > ¢

From the definition, pre;()) is the partition whose parts are:

{deaten®Fe 1<y <iyg<---<id; <L}

Similarly, pre;(u) is the partition whose parts are:

+c 4t . . .
{alc’1 CGptrtey 1<iy <ig<---<i; <}

Since pre;(A) = pre; () and Ay, - Xi; = g, - ppiy, forall 1 <dgp < -0 <y <
¢, it follows that
Gy Tyt = e+t forall 1 <idp <ip<-o-<idy <L
For convenience, we denote
Ciyyniy = Ciy T Ciy + -+ g, forall 1 <dy <dg < -0 <y <L

From Proposition 3.3, in order to prove that A\ = p, it suffices to show that
(c1,...,¢0) = (¢}, ...,¢)). In order to do that, it is enough to prove that the
linear system

J

{l’il + T+ + Ti; = Ciy,...ij ,Where 1< < <o < ij < é, (41)

has a unique solution. Since (ci,...,¢p) is already a solution of (4.1), it is
enough to prove that the matrix associated to (4.1) has the rank n. We consider
the following subsystem of (4.1):

4
Ty + T+ +Tj=Cia.j
To+ T3+ -+ Tj1 = Co. 1

Ty + X3+ T = C13. 541

T+ F+ T+ T =C 1541 - (42)
T3+ Tat -+ Tjpo = C3. 542

Ty + T+ -+ Tj43 = C4,...j+3

(Te—jr1 T+ Te = Coj1,..0

Note that the matrix associated to (4.2) is CT, where C' was defined at the
beginning of this section.
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According to Lemma 4.1 we have det(CT) = det(C') = j # 0. Hence,
(4.2) has a unique solution. Thus (4.1) has also a unique solution, as required.
O

5. Conclusions

Let n > 1 and d > 2 be two integers. We proved new formulas for p,(n),
the number of d-ary partitions of n, and, also, for P,(n), its polynomial part.

Given A a partition of length £ and 1 < j < £ — 1, we denote pre;()),
its associated j-th elementary symmetric partition; see [2, 3]. Given A and
i two d-ary partitions of length ¢ and 1 < 57 < ¢ — 1, we proved that if
pre;(A) = pre;(p) and Ay, -+ N, = pgy oo gy, forall 1 <ap <00 <y <
then A = p, thus giving a partial positive answer to a problem raised in [2].
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