

REMARKS ON d -ARY PARTITIONS AND AN APPLICATION TO ELEMENTARY SYMMETRIC PARTITIONS

Mircea Cimpoeaș¹ and Roxana Tănase²

We prove new formulas for $p_d(n)$, the number of d -ary partitions of n , and, also, for $P_d(n)$, its polynomial part.

Given a partition $\lambda = (\lambda_1, \dots, \lambda_\ell)$, its associated j -th symmetric elementary partition, $\text{pre}_j(\lambda)$, is the partition whose parts are $\{\lambda_{i_1} \cdots \lambda_{i_j} : 1 \leq i_1 < \cdots < i_j \leq \ell\}$. We prove that if λ and μ are two d -ary partitions of length ℓ such that $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ and $\lambda_{i_1} \cdots \lambda_{i_j} = \mu_{i_1} \cdots \mu_{i_j}$, for all $1 \leq i_1 < \cdots < i_j \leq \ell$, then $\lambda = \mu$.

Keywords: Restricted partitions, d -ary partitions, Elementary symmetric partitions.

MSC2010: 11P81, 11P83.

1. Introduction

Let n be a positive integer. We denote $[n] = \{1, 2, \dots, n\}$. A partition of n is a non-increasing sequence of positive integers λ_i whose sum equals n . We define $p(n)$ as the number of partitions of n and we define $p(0) = 1$. We denote $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ with $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\ell \geq 1$ and $|\lambda| := \lambda_1 + \cdots + \lambda_\ell = n$. We refer to $|\lambda|$ as the size of λ and the numbers λ_i as parts of λ . The number $\ell(\lambda) = \ell$ is the number of parts of λ and it is called the length of λ . For more on the theory of partitions, we refer the reader to [1].

Let $d \geq 2$ be an integer. A partition $\lambda = (\lambda_1, \dots, \lambda_\ell)$ is called d -ary, if all λ_i 's are powers of d . A 2-ary partition is called binary. In Proposition 3.3 we establish a natural bijection between the set of all integer partition and the set of d -ary partitions, which conserves the length (but not the size).

In Theorem 3.5 we give a new formula for $p_d(n)$, the number of d -ary partitions of n , using the fact that a d -ary partition is a partition with the parts in $\{1, d, d^2, d^3, \dots\}$. In Theorem 3.6, we give a new formula for $W_j(d, n)$'s, the Sylvester waves of $p_d(n)$. Also, in Theorem 3.7 and Theorem 3.8 we give new formulas for $P_d(n) = W_1(d, n)$, the polynomial part of $p_d(n)$. In Example 3.9, we illustrate these results.

¹Professor, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania and Simion Stoilow Institute of Mathematics, Romania, e-mail: mircea.cimpoeas@imar.ro

²Assistant professor, Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania, e-mail: roxana_elena.tanase@upb.ro

Now, let K be an arbitrary field and $S = K[x_1, \dots, x_\ell]$ be the ring of polynomials over K in ℓ indeterminates. We recall that the j^{th} elementary symmetric polynomial of S is

$$e_j(x_1, \dots, x_\ell) = \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq \ell} x_{i_1} x_{i_2} \cdots x_{i_j}, \text{ where } 1 \leq j \leq \ell.$$

Also, we define $e_0(x_1, \dots, x_\ell) = 1$ and $e_j(x_1, \dots, x_\ell) = 0$ for $j > \ell$.

Given a partition λ , we have $e_j(\lambda) = 0$ if $\ell(\lambda) < j$ and

$$e_j(\lambda) = \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq \ell(\lambda)} \lambda_{i_1} \lambda_{i_2} \cdots \lambda_{i_j}, \text{ if } 1 \leq j \leq \ell(\lambda).$$

In [2, 3], Ballantine et al. introduced the following definition. Given a partition λ , the partition $\text{pre}_j(\lambda)$ is the partition whose parts are

$$\{\lambda_{i_1} \cdots \lambda_{i_j} : 1 \leq i_1 < i_2 < \dots < i_j \leq \ell(\lambda)\},$$

and they called it an *elementary symmetric partition*. Note that $\text{pre}_1(\lambda) = \lambda$, but $\text{pre}_j(\lambda) \neq \lambda$, for $j \geq 2$. For example, if $\lambda = (3, 2, 1, 1)$, then $\text{pre}_2(\lambda) = (6, 3, 3, 2, 2, 1)$.

A natural question to ask is the following: If λ and μ are two partitions such that $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ then is it true that $\lambda = \mu$? Only the following cases are known in literature: (i) $j = 2$ and $m(\lambda), m(\mu) \leq 3$, see [3, Proposition 14] and (ii) $j = 2$ and λ and μ are binary partitions; see [3, Proposition 15]. In Theorem 4.2 we prove that if λ and μ are two d -ary partitions of length ℓ such that $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ and $\lambda_{i_1} \cdots \lambda_{i_j} = \mu_{i_1} \cdots \mu_{i_j}$, for all $1 \leq i_1 < \dots < i_j \leq \ell$, where $1 \leq j \leq \ell - 1$, then $\lambda = \mu$.

2. Preliminaries

Let $\mathbf{a} := (a_1, a_2, \dots, a_r)$ be a sequence of positive integers, where $r \geq 1$. Let λ be a partition. We say that λ has parts in \mathbf{a} if $\lambda_i \in \{a_1, \dots, a_r\}$ for all $1 \leq i \leq \ell(\lambda)$.

The *restricted partition function* associated to \mathbf{a} is $p_{\mathbf{a}} : \mathbb{N} \rightarrow \mathbb{N}$, $p_{\mathbf{a}}(n) :=$ the number of integer solutions (x_1, \dots, x_r) of $\sum_{i=1}^r a_i x_i = n$ with $x_i \geq 0$. In other words, $p_{\mathbf{a}}(n)$ counts the number of partitions of n with parts in \mathbf{a} . Note that the generating function of $p_{\mathbf{a}}(n)$ is

$$\sum_{n=0}^{\infty} p_{\mathbf{a}}(n) z^n = \frac{1}{(1 - z^{a_1}) \cdots (1 - z^{a_r})}. \quad (2.1)$$

Let D be a common multiple of a_1, a_2, \dots, a_r . Bell [5] proved that $p_{\mathbf{a}}(n)$ is a quasi-polynomial of degree $k - 1$, with the period D , that is

$$p_{\mathbf{a}}(n) = d_{\mathbf{a}, k-1}(n) n^{k-1} + \cdots + d_{\mathbf{a}, 1}(n) n + d_{\mathbf{a}, 0}(n), \quad (2.2)$$

where $d_{\mathbf{a}, m}(n + D) = d_{\mathbf{a}, m}(n)$ for $0 \leq m \leq k - 1$ and $n \geq 0$, and $d_{\mathbf{a}, k-1}(n)$ is not identically zero.

Sylvester [9],[10] decomposed the restricted partition in a sum of “waves”:

$$p_{\mathbf{a}}(n) = \sum_{j \geq 1} W_j(n, \mathbf{a}), \quad (2.3)$$

where the sum is taken over all distinct divisors j of the components of \mathbf{a} and showed that for each such j , $W_j(n, \mathbf{a})$ is the coefficient of t^{-1} in

$$\sum_{0 \leq \nu < j, \gcd(\nu, j) = 1} \frac{\rho_j^{-\nu n} e^{\nu t}}{(1 - \rho_j^{\nu a_1} e^{-a_1 t}) \cdots (1 - \rho_j^{\nu a_k} e^{-a_k t})},$$

where $\rho_j = e^{\frac{2\pi i}{j}}$ and $\gcd(0, 0) = 1$ by convention. Note that $W_j(n, \mathbf{a})$ ’s are quasi-polynomials of period j . Also, $W_1(n, \mathbf{a})$ is called the *polynomial part* of $p_{\mathbf{a}}(n)$ and it is denoted by $P_{\mathbf{a}}(n)$.

Theorem 2.1. ([6, Corollary 2.10]) *We have*

$$p_{\mathbf{a}}(n) = \frac{1}{(r-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \cdots + a_r j_r \equiv n \pmod{D}}} \prod_{\ell=1}^{r-1} \left(\frac{n - a_1 j_1 - \cdots - a_r j_r}{D} + \ell \right).$$

The *unsigned Stirling numbers* are defined by

$$\binom{n+r-1}{r-1} = \frac{1}{n(r-1)!} n^{(r)} = \frac{1}{(r-1)!} \left(\left[\begin{matrix} r \\ r \end{matrix} \right] n^{r-1} + \cdots + \left[\begin{matrix} r \\ 2 \end{matrix} \right] n + \left[\begin{matrix} r \\ 1 \end{matrix} \right] \right). \quad (2.4)$$

Theorem 2.2. ([7, Proposition 4.2]) *For any positive integer j with $j|a_i$ for some $1 \leq i \leq r$, we have that*

$$\begin{aligned} W_j(n, \mathbf{a}) &= \frac{1}{D(r-1)!} \sum_{m=1}^r \sum_{\ell=1}^j \rho_j^\ell \sum_{k=m-1}^{r-1} \left[\begin{matrix} r \\ k+1 \end{matrix} \right] (-1)^{k-m+1} \binom{k}{m-1} \times \\ &\quad \times \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1 \\ a_1 j_1 + \cdots + a_r j_r \equiv \ell \pmod{j}}} D^{-k} (a_1 j_1 + \cdots + a_r j_r)^{k-m+1} n^{m-1}. \end{aligned}$$

Theorem 2.3. ([6, Corollary 3.6]) *For the polynomial part $P_{\mathbf{a}}(n)$ of the quasi-polynomial $p_{\mathbf{a}}(n)$ we have*

$$P_{\mathbf{a}}(n) = \frac{1}{D(r-1)!} \sum_{\substack{0 \leq j_1 \leq \frac{D}{a_1}-1, \dots, 0 \leq j_r \leq \frac{D}{a_r}-1}} \prod_{\ell=1}^{r-1} \left(\frac{n - a_1 j_1 - \cdots - a_r j_r}{D} + \ell \right).$$

The *Bernoulli numbers* B_ℓ ’s are defined by $\frac{t}{e^t - 1} = \sum_{\ell=0}^{\infty} \frac{t^\ell}{\ell!} B_\ell$. We have $B_0 = 1$, $B_1 = -\frac{1}{2}$, $B_2 = \frac{1}{6}$, $B_4 = -\frac{1}{30}$ and $B_n = 0$ is n is odd and $n \geq 1$.

Theorem 2.4. ([6, Corollary 3.11] or [4, page 2]) *The polynomial part of $p_{\mathbf{a}}(n)$ is*

$$P_{\mathbf{a}}(n) := \frac{1}{a_1 \cdots a_r} \sum_{u=0}^{r-1} \frac{(-1)^u}{(r-1-u)!} \sum_{i_1 + \cdots + i_r = u} \frac{B_{i_1} \cdots B_{i_r}}{i_1! \cdots i_r!} a_1^{i_1} \cdots a_r^{i_r} n^{r-1-u}.$$

3. New formulas for the number of d-ary partitions

We fix $d \geq 2$ an integer. We denote \mathcal{P} , the set of integer partitions, and \mathcal{P}_d , the set of d -ary partitions. Given a positive integer n , we denote $p_d(n)$, the number of d -ary partitions of n .

Definition 3.1. Let $\lambda = (\lambda_1, \dots, \lambda_\ell) \in \mathcal{P}$ be a partition. The d -exponential of λ is the d -ary partition:

$$\text{Exp}_d(\lambda) := (d^{\lambda_1-1}, \dots, d^{\lambda_\ell-1}).$$

Definition 3.2. Let $\lambda = (\lambda_1, \dots, \lambda_\ell) \in \mathcal{P}_d$ be a d -ary partition. The d -logarithm of λ is the partition:

$$\text{Log}_d(\lambda) := (\log_d(\lambda_1) + 1, \dots, \log_d(\lambda_\ell) + 1).$$

Proposition 3.3. The maps $\text{Exp}_d : \mathcal{P} \rightarrow \mathcal{P}_d$ and $\text{Log}_d : \mathcal{P}_d \rightarrow \mathcal{P}$ are bijective and inverse of each other.

Proof. Let $\lambda = (\lambda_1, \dots, \lambda_\ell) \in \mathcal{P}$. We have $\text{Exp}_d(\lambda) = (d^{\lambda_1-1}, \dots, d^{\lambda_\ell-1})$. Since

$$\log_d(d^{\lambda_i-1}) + 1 = \lambda_i - 1 + 1 = \lambda_i \text{ for all } 1 \leq i \leq \ell,$$

it follows that $\text{Log}_d(\text{Exp}_d(\lambda)) = \lambda$. Similary, if $\mu \in \mathcal{P}_d$ is a d -ary partition, then it is easy to see that $\text{Exp}_d(\text{Log}_d(\mu)) = \mu$. Hence, the proof is complete. \square

Lemma 3.4. Let n and k be two positive integers such that $n < d^{k+1}$. The number of d -ary partitions of n is

$$p_d(n) = p_{(1,d,\dots,d^k)}(n).$$

In particular, the polynomial part of $p_d(n)$ is $P_d(n) = P_{(1,d,\dots,d^k)}(n)$.

Proof. Let $\lambda = (\lambda_1, \dots, \lambda_\ell)$ be a d -ary partition of n , that is $n = |\lambda|$. It follows that $\lambda_i = d^{c_i}$ with $0 \leq c_i$ and $d^{c_i} \leq n$ for all $1 \leq i \leq \ell$. Since $\lambda_1 = d^{c_1} \leq |\lambda| < d^{k+1}$ and $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_\ell$, it follows that

$$k \geq c_1 \geq c_2 \geq \dots \geq c_\ell \geq 0,$$

and, therefore, λ is a partition with parts in $(1, d, \dots, d^k)$. On the other hand, any partition with parts in $(1, d, \dots, d^k)$ is a d -ary partition. Hence, the proof is complete. \square

Theorem 3.5. Let n and k be two positive integers such that $n < d^{k+1}$. The number of d -ary partitions of n is

$$p_d(n) = \frac{1}{k!} \sum_{\substack{0 \leq j_1 \leq d^k-1, 0 \leq j_2 \leq d^{k-1}-1, \dots, 0 \leq j_k \leq d-1 \\ j_1 + j_2 d + \dots + j_k d^{k-1} \equiv n \pmod{d^k}}} \prod_{\ell=1}^k \left(\frac{n - j_1 - j_2 d - \dots - j_k d^{k-1}}{d^k} + \ell \right).$$

Proof. According to Lemma 3.4, we have $p_d(n) = p_{(1,d,\dots,d^k)}(n)$, where $k = \lfloor \log_d(n) \rfloor$. Hence, the conclusion follows from Theorem 2.1, taking $r = k + 1$ and $D = \text{lcm}(1, d, \dots, d^k) = d^k$. \square

From Lemma 3.4 and (2.3) we can write

$$p_d(n) = \sum_{j \geq 1} W_j(d, n), \text{ where } W_j(d, n) = W_j(n, (1, d, \dots, d^k)),$$

and $k = \lfloor \log_d(n) \rfloor$. In particular, the polynomial part of $p_d(n)$ is

$$P_d(n) = W_1(d, n).$$

Theorem 3.6. *Let n and k be two positive integers such that $n < d^{k+1}$. We have that*

$$W_j(d, n) = \frac{1}{k!d^k} \sum_{m=1}^{k+1} \sum_{\ell=1}^j \rho_j^\ell \sum_{s=m-1}^k \binom{k+1}{s+1} (-1)^{s-m+1} \binom{s}{m-1} \times \\ \times \sum_{\substack{0 \leq j_1 \leq d^k-1, \dots, 0 \leq j_k \leq d-1 \\ j_1+dj_2+\dots+d^{k-1}j_{k-1} \equiv \ell \pmod{j}}} d^{-ks} (j_1 + dj_2 + \dots + d^{k-1}j_{k-1})^{s-m+1} n^{m-1}.$$

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.2. \square

Theorem 3.7. *Let n and k be two positive integers such that $n < d^{k+1}$. The polynomial part of $p_d(n)$ is*

$$P_d(n) = \frac{1}{k!d^k} \sum_{0 \leq j_1 \leq d^k-1, 0 \leq j_2 \leq d^{k-1}-1, \dots, 0 \leq j_k \leq d-1} \prod_{\ell=1}^k \left(\frac{n - j_1 - j_2 d - \dots - j_k d^{k-1}}{d^k} + \ell \right).$$

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.3. \square

Theorem 3.8. *Let n and k be two positive integers such that $n < d^{k+1}$. The polynomial part of $p_d(n)$ is*

$$P_d(n) = \frac{1}{d^{\frac{k(k+1)}{2}}} \sum_{u=0}^k \frac{(-1)^u}{(k-u)!} \sum_{i_1+\dots+i_{k+1}=u} \frac{B_{i_1} \cdots B_{i_{k+1}}}{i_1! \cdots i_{k+1}!} d^{i_2+2i_3+\dots+ki_{k+1}} n^{k-u}.$$

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.4. \square

Example 3.9. (1) Let $n = 8$ and $d = 3$. Since $n < d^{1+1}$, Theorem 3.5 implies

$$p_3(8) = \frac{1}{1!} \sum_{0 \leq j_1 \leq 2, j_1 \equiv 8 \pmod{3}} \left(\frac{8 - j_1}{3} + 1 \right) = \frac{8 - 2}{3} + 1 = 3.$$

Also, from Theorem 3.7 it follows that the polynomial part of $p_3(8)$ is

$$P_3(8) = \frac{1}{1! \cdot 3^1} \sum_{j_1=0}^2 \left(\frac{8 - j_1}{3} + 1 \right) = \frac{1}{9} \sum_{j_1=0}^2 (11 - j_1) = \frac{11 + 10 + 9}{9} = \frac{10}{3}.$$

(2) Let $n = 20$ and $d = 3$. Since $n < d^{2+1}$, Theorem 3.5 implies

$$p_3(20) = \frac{1}{162} \sum_{\substack{0 \leq j_1 \leq 8, 0 \leq j_2 \leq 2 \\ j_1+3j_2 \equiv 20 \pmod{9}}} (29 - j_1 - 3j_2)(38 - j_1 - 3j_2).$$

Since the set of pairs (j_1, j_2) which satisfy the above conditions is $\{(2, 0), (8, 1), (5, 2)\}$, it follows that $p_3(20) = \frac{1}{162}(28 \cdot 36 + 18 \cdot 27 + 18 \cdot 27) = 12$.

4. An application to elementary symmetric partitions

Given $n \geq 2$ an integer, we denote by $\{e_1, \dots, e_n\}$, the standard basis of the vector space \mathbb{R}^n , i.e. e_i is the vector with 1 in the i -th position and zeros everywhere else.

Let $1 \leq j \leq n - 1$ be an integer. We consider the vectors:

$$c_i = \begin{cases} e_1 + e_2 + \dots + e_j, & i = 1 \\ e_1 + e_2 + \dots + e_{j+1} - e_{i-1}, & 2 \leq i \leq j+1 \\ e_{i-j+1} + e_{i-j+2} + \dots + e_i, & j+2 \leq i \leq n \end{cases}$$

Let C be the $n \times n$ matrix whose columns are c_1, c_2, \dots, c_n .

To better illustrate the structure of the matrix C , we present the case $n = 6$ and $j = 3$:

$$C = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Lemma 4.1. *With the above notations, we have that $\det(C) = j$.*

Proof. From the definition of C , we easily note that $\det(C) = \det(A)$, where

$$A = \begin{pmatrix} 1 & 0 & 1 & \dots & 1 \\ 1 & 1 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & \dots & 0 \\ 0 & 1 & 1 & \dots & 1 \end{pmatrix}$$

is a $(j+1) \times (j+1)$ circulant matrix with the associated polynomial

$$f(x) = 1 + x + x^2 + \dots + x^{j-1}.$$

For more details on circulant matrices, we refer the reader to [8].

Let $\omega = e^{\frac{2\pi i}{j+1}}$ be a primitive $(j+1)$ -th root of unity. Using a basic result on circulant matrices, we have that $\det(A) = \prod_{k=0}^j f(\omega^k)$.

It is clear that $f(\omega^0) = f(1) = j$. On the other hand, for $1 \leq k \leq j$, we have that $f(\omega^k) = 1 + \omega^k + \dots + \omega^{k(j-1)} = -\omega^{kj}$. Therefore, it follows that

$$\det(A) = (-1)^j j \omega^{\frac{j^2(j+1)}{2}}.$$

If j is even, then

$$\omega^{\frac{j^2(j+1)}{2}} = (\omega^{j+1})^{\frac{j^2}{2}} = 1^{\frac{j^2}{2}} = 1.$$

On the other hand, if j is odd, then

$$\omega^{\frac{j^2(j+1)}{2}} = (\omega^{\frac{(j+1)}{2}})^{j^2} = (-1)^{j^2} = -1.$$

Hence, in both cases, we have that $\det(A) = j$. Thus, the proof is complete. \square

Theorem 4.2. *Let λ and μ be two d -ary partitions with ℓ parts and let $1 \leq j \leq \ell - 1$ be an integer. If $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ and $\lambda_{i_1} \cdots \lambda_{i_j} = \mu_{i_1} \cdots \mu_{i_j}$, for all $1 \leq i_1 < \cdots < i_j \leq \ell$, then $\lambda = \mu$.*

Proof. Since λ is a d -ary partition, it follows that $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$ such that $\lambda_i = d^{c_i}$, for all $1 \leq i \leq \ell$, and $c_1 \geq c_2 \geq \cdots \geq c_\ell$. Similarly, $\mu = (\mu_1, \dots, \mu_\ell)$ with $\mu_i = d^{c'_i}$, for all $1 \leq i \leq \ell$, and $c_1 \geq c_2 \geq \cdots \geq c_\ell$.

From the definition, $\text{pre}_j(\lambda)$ is the partition whose parts are:

$$\{d^{c_{i_1} + c_{i_2} + \cdots + c_{i_j}} : 1 \leq i_1 < i_2 < \cdots < i_j \leq \ell\}.$$

Similarly, $\text{pre}_j(\mu)$ is the partition whose parts are:

$$\{d^{c'_{i_1} + c'_{i_2} + \cdots + c'_{i_j}} : 1 \leq i_1 < i_2 < \cdots < i_j \leq \ell\}.$$

Since $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ and $\lambda_{i_1} \cdots \lambda_{i_j} = \mu_{i_1} \cdots \mu_{i_j}$, for all $1 \leq i_1 < \cdots < i_j \leq \ell$, it follows that

$$c'_{i_1} + c'_{i_2} + \cdots + c'_{i_j} = c_{i_1} + c_{i_2} + \cdots + c_{i_j}, \text{ for all } 1 \leq i_1 < i_2 < \cdots < i_j \leq \ell.$$

For convenience, we denote

$$c_{i_1, \dots, i_j} := c_{i_1} + c_{i_2} + \cdots + c_{i_j}, \text{ for all } 1 \leq i_1 < i_2 < \cdots < i_j \leq \ell.$$

From Proposition 3.3, in order to prove that $\lambda = \mu$, it suffices to show that $(c_1, \dots, c_\ell) = (c'_1, \dots, c'_\ell)$. In order to do that, it is enough to prove that the linear system

$$\left\{ x_{i_1} + x_{i_2} + \cdots + x_{i_j} = c_{i_1, \dots, i_j} \quad , \text{ where } 1 \leq i_1 < i_2 < \cdots < i_j \leq \ell, \quad (4.1) \right.$$

has a unique solution. Since (c_1, \dots, c_ℓ) is already a solution of (4.1), it is enough to prove that the matrix associated to (4.1) has the rank n . We consider the following subsystem of (4.1):

$$\left\{ \begin{array}{l} x_1 + x_2 + \cdots + x_j = c_{1,2,\dots,j} \\ x_2 + x_3 + \cdots + x_{j+1} = c_{2,\dots,j+1} \\ x_1 + x_3 + \cdots + x_{j+1} = c_{1,3,\dots,j+1} \\ \vdots \\ x_1 + \cdots + x_{j-1} + x_{j+1} = c_{1,\dots,j-1,j+1} \\ x_3 + x_4 + \cdots + x_{j+2} = c_{3,\dots,j+2} \\ x_4 + x_5 + \cdots + x_{j+3} = c_{4,\dots,j+3} \\ \vdots \\ x_{\ell-j+1} + \cdots + x_\ell = c_{\ell-j+1,\dots,\ell} \end{array} \right. . \quad (4.2)$$

Note that the matrix associated to (4.2) is C^T , where C was defined at the beginning of this section.

According to Lemma 4.1 we have $\det(C^T) = \det(C) = j \neq 0$. Hence, (4.2) has a unique solution. Thus (4.1) has also a unique solution, as required. \square

5. Conclusions

Let $n \geq 1$ and $d \geq 2$ be two integers. We proved new formulas for $p_d(n)$, the number of d -ary partitions of n , and, also, for $P_d(n)$, its polynomial part.

Given λ a partition of length ℓ and $1 \leq j \leq \ell - 1$, we denote $\text{pre}_j(\lambda)$, its associated j -th elementary symmetric partition; see [2, 3]. Given λ and μ two d -ary partitions of length ℓ and $1 \leq j \leq \ell - 1$, we proved that if $\text{pre}_j(\lambda) = \text{pre}_j(\mu)$ and $\lambda_{i_1} \cdots \lambda_{i_j} = \mu_{i_1} \cdots \mu_{i_j}$, for all $1 \leq i_1 < \cdots < i_j \leq \ell$, then $\lambda = \mu$, thus giving a partial positive answer to a problem raised in [2].

REFERENCES

- [1] *G. E. Andrews*, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge 1998.
- [2] *C. Ballantine, G. Beck, M. Merca et al.*, Elementary Symmetric Partitions, Ann. Comb. (2024), <https://doi.org/10.1007/s00026-024-00731-0>.
- [3] *C. Ballantine, G. Beck, M. Merca*, Partitions and elementary symmetric polynomials: an experimental approach, Ramanujan J. **66**, 34 (2025), <https://doi.org/10.1007/s11139-024-01001-6>.
- [4] *M. Beck, I. M. Gessel, T. Komatsu*, The polynomial part of a restricted partition function related to the Frobenius problem, Electron. J. Comb. **8(1)** (2001), N 7 (5 pages).
- [5] *E. T. Bell*, Interpolated denumerants and Lambert series, Am. J. Math. **65** (1943), 382–386.
- [6] *M. Cimpoeaș, F. Nicolae*, On the restricted partition function, Ramanujan J. **47(3)** (2018), 565–588.
- [7] *M. Cimpoeaș*, Remarks on the restricted partition function, Math. Reports **23(73)(4)** (2021), 425–436.
- [8] *A. W. Ingleton*, The Rank of Circulant Matrices, J. London Math. Soc. **31(4)** (1956), 445–460.
- [9] *J. J. Sylvester*, On the partition of numbers, Quart. J. Pure Appl. Math. **1** (1857), 81–85.
- [10] *J. J. Sylvester*, On subinvariants, i.e. semi-invariants to binary quantics of an unlimited order with an excursus on rational fractions and partitions, Am. J. Math. **5(1)** (1882), 79–136.