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REMARKS ON d-ARY PARTITIONS AND AN APPLICATION
TO ELEMENTARY SYMMETRIC PARTITIONS

Mircea Cimpoeaş1 and Roxana Tănase2

We prove new formulas for pd(n), the number of d-ary parti-
tions of n, and, also, for Pd(n), its polynomial part.

Given a partition λ = (λ1, . . . , λ`), its associated j-th symmetric elemen-
tary partition, prej(λ), is the partition whose parts are {λi1 · · ·λij : 1 ≤
i1 < · · · < ij ≤ `}. We prove that if λ and µ are two d-ary partitions
of length ` such that prej(λ) = prej(µ) and λi1 · · ·λij = µi1 · · ·µij , for all
1 ≤ i1 < · · · < ij ≤ `, then λ = µ.
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1. Introduction

Let n be a positive integer. We denote [n] = {1, 2, . . . , n}. A partition of
n is a non-increasing sequence of positive integers λi whose sum equals n. We
define p(n) as the number of partitions of n and we define p(0) = 1. We denote
λ = (λ1, λ2, . . . , λ`) with λ1 ≥ λ2 ≥ · · · ≥ λ` ≥ 1 and |λ| := λ1 + · · ·+ λ` = n.
We refer to |λ| as the size of λ and the numbers λi as parts of λ. The number
`(λ) = ` is the number of parts of λ and it is called the length of λ. For more
on the theory of partitions, we refer the reader to [1].

Let d ≥ 2 be an integer. A partition λ = (λ1, . . . , λ`) is called d-ary, if
all λi’s are powers of d. A 2-ary partition is called binary. In Proposition 3.3
we establish a natural bijection between the set of all integer partition and the
set of d-ary partitions, which conserves the length (but not the size).

In Theorem 3.5 we give a new formula for pd(n), the number of d-ary
partitions of n, using the fact that a d-ary partition is a partition with the parts
in {1, d, d2, d3, . . .}. In Theorem 3.6, we give a new formula for Wj(d, n)’s, the
Sylvester waves of pd(n). Also, in Theorem 3.7 and Theorem 3.8 we give new
formulas for Pd(n) = W1(d, n), the polynomial part of pd(n). In Example 3.9,
we illustrate these results.
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Now, let K be an arbitrary field and S = K[x1, . . . , x`] be the ring of
polynomials over K in ` indeterminates. We recall that the jth elementary
symmetric polynomial of S is

ej(x1, . . . , x`) =
∑

1≤i1<i2<...<ij≤`

xi1xi2 · · ·xij , where 1 ≤ j ≤ `.

Also, we define e0(x1, . . . , x`) = 1 and ej(x1, . . . , x`) = 0 for j > `.
Given a partition λ, we have ej(λ) = 0 if `(λ) < j and

ej(λ) =
∑

1≤i1<i2<...<ij≤`(λ)

λi1λi2 · · ·λij , if 1 ≤ j ≤ `(λ).

In [2, 3], Ballantine et al. introduced the following definition. Given a partition
λ, the partition prej(λ) is the partition whose parts are

{λi1 · · ·λij : 1 ≤ i1 < i2 < · · · < ij ≤ `(λ)},

and they called it an elementary symmetric partition. Note that pre1(λ) = λ,
but prej(λ) 6= λ, for j ≥ 2. For example, if λ = (3, 2, 1, 1), then pre2(λ) =
(6, 3, 3, 2, 2, 1).

A natural question to ask is the following: If λ and µ are two partitions
such that prej(λ) = prej(µ) then is it true that λ = µ? Only the following
cases are known in literature: (i) j = 2 and m(λ),m(µ) ≤ 3, see [3, Proposition
14] and (ii) j = 2 and λ and µ are binary partitions; see [3, Proposition 15]. In
Theorem 4.2 we prove that if λ and µ are two d-ary partitions of length ` such
that prej(λ) = prej(µ) and λi1 · · ·λij = µi1 · · ·µij , for all 1 ≤ i1 < · · · < ij ≤ `,
where 1 ≤ j ≤ `− 1, then λ = µ.

2. Preliminaries

Let a := (a1, a2, . . . , ar) be a sequence of positive integers, where r ≥ 1.
Let λ be a partition. We say that λ has parts in a if λi ∈ {a1, . . . , ar} for all
1 ≤ i ≤ `(λ).

The restricted partition function associated to a is pa : N→ N, pa(n) :=
the number of integer solutions (x1, . . . , xr) of

∑r
i=1 aixi = n with xi ≥ 0. In

other words, pa(n) counts the number of partitions of n with parts in a. Note
that the generating function of pa(n) is

∞∑
n=0

pa(n)zn =
1

(1− za1) · · · (1− zar)
. (2.1)

Let D be a common multiple of a1, a2, . . . , ar. Bell [5] proved that pa(n) is a
quasi-polynomial of degree k − 1, with the period D, that is

pa(n) = da,k−1(n)nk−1 + · · ·+ da,1(n)n+ da,0(n), (2.2)

where da,m(n + D) = da,m(n) for 0 ≤ m ≤ k − 1 and n ≥ 0, and da,k−1(n) is
not identically zero.
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Sylvester [9],[10] decomposed the restricted partition in a sum of “waves”:

pa(n) =
∑
j≥1

Wj(n, a), (2.3)

where the sum is taken over all distinct divisors j of the components of a and
showed that for each such j, Wj(n, a) is the coefficient of t−1 in∑

0≤ν<j, gcd(ν,j)=1

ρ−νnj ent

(1− ρνa1j e−a1t) · · · (1− ρνakj e−akt)
,

where ρj = e
2πi
j and gcd(0, 0) = 1 by convention. Note that Wj(n, a)’s are

quasi-polynomials of period j. Also, W1(n, a) is called the polynomial part of
pa(n) and it is denoted by Pa(n).

Theorem 2.1. ([6, Corollary 2.10]) We have

pa(n) =
1

(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡n( mod D)

r−1∏
`=1

(
n− a1j1 − · · · − arjr

D
+ `

)
.

The unsigned Stirling numbers are defined by(
n+ r − 1

r − 1

)
=

1

n(r − 1)!
n(r) =

1

(r − 1)!

([
r

r

]
nr−1 + · · ·

[
r

2

]
n+

[
r

1

])
. (2.4)

Theorem 2.2. ([7, Proposition 4.2]) For any positive integer j with j|ai for
some 1 ≤ i ≤ r, we have that

Wj(n, a) =
1

D(r − 1)!

r∑
m=1

j∑
`=1

ρ`j

r−1∑
k=m−1

[
r

k + 1

]
(−1)k−m+1

(
k

m− 1

)
×

×
∑

0≤j1≤ D
a1
−1,...,0≤jr≤ D

ar
−1

a1j1+···+arjr≡`( mod j)

D−k(a1j1 + · · ·+ arjr)
k−m+1nm−1.

Theorem 2.3. ([6, Corollary 3.6]) For the polynomial part Pa(n) of the quasi-
polynomial pa(n) we have

Pa(n) =
1

D(r − 1)!

∑
0≤j1≤ D

a1
−1,...,0≤jr≤ D

ar
−1

r−1∏
`=1

(
n− a1j1 − · · · − arjr

D
+ `

)
.

The Bernoulli numbers B`’s are defined by t
et−1 =

∑∞
`=0

t`

`!
B`. We have

B0 = 1, B1 = −1
2
, B2 = 1

6
, B4 = − 1

30
and Bn = 0 is n is odd and n ≥ 1.

Theorem 2.4. ([6, Corollary 3.11] or [4, page 2]) The polynomial part of pa(n)
is

Pa(n) :=
1

a1 · · · ar

r−1∑
u=0

(−1)u

(r − 1− u)!

∑
i1+···+ir=u

Bi1 · · ·Bir

i1! · · · ir!
ai11 · · · airr nr−1−u.
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3. New formulas for the number of d-ary partitions

We fix d ≥ 2 an integer. We denote P, the set of integer partitions, and
Pd, the set of d-ary partitions. Given a positive integer n, we denote pd(n),
the number of d-ary partitions of n.

Definition 3.1. Let λ = (λ1, . . . , λ`) ∈ P be a partition. The d-exponential of
λ is the d-ary partition:

Expd(λ) := (dλ1−1, . . . , dλ`−1).

Definition 3.2. Let λ = (λ1, . . . , λ`) ∈ Pd be a d-ary partition. The d-
logarithm of λ is the partition:

Logd(λ) := (logd(λ1) + 1, . . . , logd(λ`) + 1).

Proposition 3.3. The maps Expd : P → Pd and Logd : Pd → P are bijective
and inverse of each other.

Proof. Let λ = (λ1, . . . , λ`) ∈ P. We have Expd(λ) = (dλ1−1, . . . , dλ`−1). Since

logd(d
λi−1) + 1 = λi − 1 + 1 = λi for all 1 ≤ i ≤ `,

it follows that Logd(Expd(λ)) = λ. Similary, if µ ∈ Pd is a d-ary partition, then
it is easy to see that Expd(Logd(µ)) = µ. Hence, the proof is complete. �

Lemma 3.4. Let n and k be two positive integers such that n < dk+1. The
number of d-ary partitions of n is

pd(n) = p(1,d,...,dk)(n).

In particular, the polynomial part of pd(n) is Pd(n) = P(1,d,...,dk)(n).

Proof. Let λ = (λ1, . . . , λ`) be a d-ary partition of n, that is n = |λ|. It
follows that λi = dci with 0 ≤ ci and dci ≤ n for all 1 ≤ i ≤ `. Since
λ1 = dc1 ≤ |λ| < dk+1 and λ1 ≥ λ2 ≥ · · · ≥ λ`, it follows that

k ≥ c1 ≥ c2 ≥ · · · ≥ c` ≥ 0,

and, therefore, λ is a partition with parts in (1, d, . . . , dk). On the other hand,
any partition with parts in (1, d, . . . , dk) is a d-ary partition. Hence, the proof
is complete. �

Theorem 3.5. Let n and k be two positive integers such that n < dk+1. The
number of d-ary partitions of n is

pd(n) =
1

k!

∑
0≤j1≤dk−1, 0≤j2≤dk−1−1, ...,0≤jk≤d−1

j1+j2d+···+jkdk−1≡n( mod dk)

k∏
`=1

(
n− j1 − j2d− · · · − jkdk−1

dk
+ `

)
.

Proof. According to Lemma 3.4, we have pd(n) = p(1,d,...,dk)(n), where k =
blogd(n)c. Hence, the conclusion follows from Theorem 2.1, taking r = k + 1
and D = lcm(1, d, . . . , dk) = dk. �
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From Lemma 3.4 and (2.3) we can write

pd(n) =
∑
j≥1

Wj(d, n), where Wj(d, n) = Wj(n, (1, d, . . . , d
k)),

and k = blogd(n)c. In particular, the polynomial part of pd(n) is

Pd(n) = W1(d, n).

Theorem 3.6. Let n and k be two positive integers such that n < dk+1. We
have that

Wj(d, n) =
1

k!dk

k+1∑
m=1

j∑
`=1

ρ`j

k∑
s=m−1

[
k + 1

s+ 1

]
(−1)s−m+1

(
s

m− 1

)
×

×
∑

0≤j1≤dk−1,...,0≤jk≤d−1
j1+dj2+···+dk−1jk−1≡`( mod j)

d−ks(j1 + dj2 + · · ·+ dk−1jk−1)
s−m+1nm−1.

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.2. �

Theorem 3.7. Let n and k be two positive integers such that n < dk+1. The
polynomial part of pd(n) is

Pd(n) =
1

k!dk

∑
0≤j1≤dk−1, 0≤j2≤dk−1−1, ...,0≤jk≤d−1

k∏
`=1

(
n− j1 − j2d− · · · − jkdk−1

dk
+ `

)
.

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.3. �

Theorem 3.8. Let n and k be two positive integers such that n < dk+1. The
polynomial part of pd(n) is

Pd(n) =
1

d
k(k+1)

2

k∑
u=0

(−1)u

(k − u)!

∑
i1+···+ik+1=u

Bi1 · · ·Bik+1

i1! · · · ik+1!
di2+2i3+···+kik+1nk−u.

Proof. The conclusion follows from Lemma 3.4 and Theorem 2.4. �

Example 3.9. (1) Let n = 8 and d = 3. Since n < d1+1, Theorem 3.5 implies

p3(8) =
1

1!

∑
0≤j1≤2, j1≡8( mod 3)

(
8− j1

3
+ 1

)
=

8− 2

3
+ 1 = 3.

Also, from Theorem 3.7 it follows that the polynomial part of p3(8) is

P3(8) =
1

1! · 31
2∑

j1=0

(
8− j1

3
+ 1

)
=

1

9

2∑
j1=0

(11− j1) =
11 + 10 + 9

9
=

10

3
.

(2) Let n = 20 and d = 3. Since n < d2+1, Theorem 3.5 implies

p3(20) =
1

162

∑
0≤j1≤8, 0≤j2≤2
j1+3j2≡20( mod 9)

(29− j1 − 3j2)(38− j1 − 3j2).

Since the set of pairs (j1, j2) which satisfy the above conditions is {(2, 0), (8, 1), (5, 2)},
it follows that p3(20) = 1

162
(28 · 36 + 18 · 27 + 18 · 27) = 12.
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4. An application to elementary symmetric partitions

Given n ≥ 2 an integer, we denote by {e1, . . . , en}, the standard basis of
the vector space Rn, i.e. ei is the vector with 1 in the i-th position and zeros
everywhere else.

Let 1 ≤ j ≤ n− 1 be an integer. We consider the vectors:

ci =


e1 + e2 + · · ·+ ej, i = 1

e1 + e2 + · · ·+ ej+1 − ei−1, 2 ≤ i ≤ j + 1

ei−j+1 + ei−j+2 + · · ·+ ei, j + 2 ≤ i ≤ n

Let C be the n× n matrix whose columns are c1, c2, . . . , cn.
To better illustrate the structure of the matrix C, we present the case

n = 6 and j = 3:

C =


1 0 1 1 0 0
1 1 0 1 0 0
1 1 1 0 1 0
0 1 1 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1

 .

Lemma 4.1. With the above notations, we have that det(C) = j.

Proof. From the definition of C, we easily note that det(C) = det(A), where

A =


1 0 1 · · · 1
1 1 0 · · · 1
...

...
...

. . .
...

1 1 1 · · · 0
0 1 1 · · · 1


is a (j + 1)× (j + 1) circulant matrix with the associated polynomial

f(x) = 1 + x+ x2 + · · ·+ xj−1.

For more details on circulant matrices, we refer the reader to [8].

Let ω = e
2πi
j+1 be a primitive (j + 1)-th root of unity. Using a basic result

on circulant matrices, we have that det(A) =
∏j

k=0 f(ωk).
It is clear that f(ω0) = f(1) = j. On the other hand, for 1 ≤ k ≤ j, we

have that f(ωk) = 1 + ωk + · · ·+ ωk(j−1) = −ωkj. Therefore, it follows that

det(A) = (−1)jjω
j2(j+1)

2 .

If j is even, then

ω
j2(j+1)

2 = (ωj+1)
j2

2 = 1
j2

2 = 1.

On the other hand, if j is odd, then

ω
j2(j+1)

2 = (ω
(j+1)

2 )j
2

= (−1)j
2

= −1.
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Hence, in both cases, we have that det(A) = j. Thus, the proof is complete. �

Theorem 4.2. Let λ and µ be two d-ary partitions with ` parts and let 1 ≤
j ≤ ` − 1 be an integer. If prej(λ) = prej(µ) and and λi1 · · ·λij = µi1 · · ·µij ,
for all 1 ≤ i1 < · · · < ij ≤ `, then λ = µ.

Proof. Since λ is a d-ary partition, it follows that λ = (λ1, λ2, . . . , λ`) such that
λi = dci , for all 1 ≤ i ≤ `, and c1 ≥ c2 ≥ · · · ≥ c`. Similarly, µ = (µ1, . . . , µ`)
with µi = dc

′
i , for all 1 ≤ i ≤ `, and c1 ≥ c2 ≥ · · · ≥ c`.

From the definition, prej(λ) is the partition whose parts are:

{dci1+ci2+···+cij : 1 ≤ i1 < i2 < · · · < ij ≤ `}.
Similarly, prej(µ) is the partition whose parts are:

{dc
′
i1
+c′i2

+···+c′ij : 1 ≤ i1 < i2 < · · · < ij ≤ `}.
Since prej(λ) = prej(µ) and λi1 · · ·λij = µi1 · · ·µij , for all 1 ≤ i1 < · · · < ij ≤
`, it follows that

c′i1 + c′i2 + · · ·+ c′ij = ci1 + ci2 + · · ·+ cij , for all 1 ≤ i1 < i2 < · · · < ij ≤ `.

For convenience, we denote

ci1,...,ij := ci1 + ci2 + · · ·+ cij , for all 1 ≤ i1 < i2 < · · · < ij ≤ `.

From Proposition 3.3, in order to prove that λ = µ, it suffices to show that
(c1, . . . , c`) = (c′1, . . . , c

′
`). In order to do that, it is enough to prove that the

linear system{
xi1 + xi2 + · · ·+ xij = ci1,...,ij ,where 1 ≤ i1 < i2 < · · · < ij ≤ `, (4.1)

has a unique solution. Since (c1, . . . , c`) is already a solution of (4.1), it is
enough to prove that the matrix associated to (4.1) has the rank n. We consider
the following subsystem of (4.1):

x1 + x2 + · · ·+ xj = c1,2,...,j

x2 + x3 + · · ·+ xj+1 = c2,...,j+1

x1 + x3 + · · ·+ xj+1 = c1,3,...,j+1

...

x1 + · · ·+ xj−1 + xj+1 = c1,...,j−1,j+1

x3 + x4 + · · ·+ xj+2 = c3,...,j+2

x4 + x5 + · · ·+ xj+3 = c4,...,j+3

...

x`−j+1 + · · ·+ x` = c`−j+1,...,`

. (4.2)

Note that the matrix associated to (4.2) is CT , where C was defined at the
beginning of this section.
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According to Lemma 4.1 we have det(CT ) = det(C) = j 6= 0. Hence,
(4.2) has a unique solution. Thus (4.1) has also a unique solution, as required.

�

5. Conclusions

Let n ≥ 1 and d ≥ 2 be two integers. We proved new formulas for pd(n),
the number of d-ary partitions of n, and, also, for Pd(n), its polynomial part.

Given λ a partition of length ` and 1 ≤ j ≤ ` − 1, we denote prej(λ),
its associated j-th elementary symmetric partition; see [2, 3]. Given λ and
µ two d-ary partitions of length ` and 1 ≤ j ≤ ` − 1, we proved that if
prej(λ) = prej(µ) and λi1 · · ·λij = µi1 · · ·µij , for all 1 ≤ i1 < · · · < ij ≤ `,
then λ = µ, thus giving a partial positive answer to a problem raised in [2].
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