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ON HOMOLOGICAL NOTIONS OF BANACH ALGEBRAS RELATED
TO A CHARACTER

A. Sahami!

In this paper, we countinue our work in [16]. We show that L*(G,w) is
do-biprojective if and only if G is compact, where ¢ is the augmentation character.
We introduce the notions of character Johnson amenability and character Johnson con-
tractibility for Banach algebras. We show that £*(S) is pseudo-amenable if and only if
£1(S) is character Johnson-amenable, provided that S is a uniformly locally finite band
semigroup. We give some conditions whether ¢-biprojectivity (¢-biflatness) of £1(S)
implies the finiteness (amenability) of S, respectively.
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1. Introduction

Helemskii studied Banach algebras via the Banach homology theory. In order to
his investigation, he defined biflat and biprojective Banach algebras. Indeed, A is called
biflat (biprojective), if there exists a bounded A-bimodule morphism p : A — (A ®, A)**
(p: A— A®, A) such that 7** o p is the canonical embedding of A into A** (p is a right
inverse for 7), respectively, see [15]. He showed that L*(G) is a biflat Banach algebra if and
only if G is amenable and also L!(G) is biprojective if and only if G is compact, see [8].

Recently, Kanuith et al. in [12] have been used this idea and defined a new notion of
amenability for Banach algebra depended on a character of that Banach algebra. Indeed,
for a character ¢ € A(A), they defined the new notion of left ¢-amenability, that is, A
is left ¢-amenable Banach algebra if H'(A, X*) = {0}, for every Banach A-bimodule X,
provided that a - © = ¢(a)z, for all a € A and € X. They also showed that the Fourier
algebra A(G) is ¢-amenable for each ¢ € A(A). Hu et al. in [11] used the idea of virtual
diagonal of Banach algebras and defined a parallel notion to left ¢-amenability and called
it left ¢-contractibility. This theory has been under more investigations, Sangani Monfared
in [18] defined the concept of character amenability which used every character of a Banach
algebra to studying its properties. He showed that L!(G) is character amenable if and only
if G is amenable. Recently Nasr-Isfahani et al. has been investigated the notions of left
¢-amenability and left ¢-contractibility in the Banach homology terms, see [14].

Motivated by these considerations, in order to find biflatness and biprojectivity re-
lated to a character the author with A. Pourabbas defined the notions of ¢-biflatness, ¢-
biprojectivity and ¢-Johnson amenability for Banach algebras, see [16]. They showed that
for a locally compact group G, L'(G) is ¢-biflat if and only if G is amenable. Also they
showed that the Fourier algebra A(G) is ¢-biprojective if and only if G is discrete. For a
discrete group G, they showed that ¢1(Q) is ¢-biprojective if and only if G is finite.
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The content of this paper is as follows, after recalling some definitions and back-
ground notations. We extend [16, Lemma 4.2] to Beurling algebras. We show that L' (G, w)
is ¢g-biprojective if and only if G is compact, where ¢g is the augmentation character.) We
introduce character Johnson amenability and character Johnson contractibility for Banach
algebras. We show that ¢!(S) is pseudo-amenable if and only if £1(S) is character Johnson-
amenable, provided that S is a uniformly locally finite band semigroup. We give some
conditions whether ¢-biprojectivity (¢-biflatness) of £1(S) implies the finiteness (amenabil-
ity) of S, respectively.

2. Preliminaries

We recall that if X is a Banach A-bimodule, then with the following actions X* is
also a Banach A-bimodule

(a- fx)=f(z-a), (f-a)(z)=f(a-2) (aeAjzeX, feX™).
Let A and B be Banach algebras. The projective tensor product of A and B is denoted by
A ®, B and with the following multiplication is a Banach algebra

(a1®b1)(a2®b2) =ajas ® b1by (al,ag EA, bl,bz c B)
The Banach algebra A ®, A with the following actions is a Banach A-bimodule
a-b®c)=ab®ec, (b®c)-a=b®ca (a,b,c € A).

Throughout, the character space of A is denoted by A(A). Let ¢ € A(A). Then ¢ has
a unique extension to A** denoted by ¢ and defined by QNS(F) = F(¢) for every F' € A**.
Clearly this extension remains to be a character on A**. We denote 74 : A ®, A — A for
the product morphism which specified by 74(a ® b) = ab.

Let A be a Banach algebra and X be a Banach A-bimodule. The n!* cohomology
group of A with coefficients in X is denoted by H"™(A, X). In fact A is an amenable Banach
algebra, if H'(A, X*) = {0} for every Banach A-bimodule X.

The Banach algebra A is called ¢-biprojective (¢-biflat), if there exists a bounded
A-bimodule morphism p: A -+ A®, A (p: A — (A®, A)**) such that

pomaopla) =d(a) (dori opla) = ¢(a)),
respectively for every a € A. A Banach algebra A is called ¢-Johnson amenable(¢-Johnson
contractible) if there exists m € (A®, A)** (m € A®, A) such that

a-m=m-a, ¢ory(m)=1,(poma(m)=1) (ac A),

respectively for every a € A. For more details, we refer the readers to [16].

Let G be a locally compact group. A continuous map w : G — R7 is called a weight
function, if w(e) = 1 and for every z and y in G, w(zy) < w(z)w(y) and w(z) > 1. The
Banach algebra of all measurable functions f from G into C with || f||, = [ |f(2)|w(z)dx <
oo and the convolution product is denoted by L'(G,w). The Banach algebra of all complex-
valued, regular and Borel measures p on G such that ||u||, = [, w(z)d|p|(x) < oo is denoted
by M(G,w). We write M (G), whenever w = 1. The map ¢o : L' (G, w) — C which specified
by

dolf) = /G f(@)de

is called augmentation character, for more details see [3].

We recall that S is an inverse semigroup, if for each s € S there exists a unique element
s* € S such that ss*s = s and s*ss* = s* [10]. The set of idempotents of a semigroup S is
denoted by E(S) . There exists a partial order on E(S), indeed

s<t<=s=st=1ts (s,t € E(9)).



On homological notions of Banach algebras related to a character 119

If S is an inverse semigroup, then there exists a partial order on S which is coincide with
the partial order on E(S). Indeed

s <t<=s=ss" (s,t €09).

For the partially ordered set (S, <), we denote (z] = {y € S|y < x}. The set
S is called locally finite (uniformly locally finite) if for every x € S, we have |(z]| <
oo (sup{|(z]||z € S} < 00), respectively.

3. ¢-biprojectivity of Beurling algebras

Let A be a Banach algebra and let L be a closed ideal of A. We say that L is left
essential as a Banach A-bimodule, if AL = L.

Let A be a Banach algebra and ¢ € A( ). Suppose that L C ker ¢ is a closed ideal
of A. Clearly ¢ induces a character ¢ on %, which is defined by ¢(z + L) = ¢(x) for every
x € A

Proposition 3.1. Let A be a Banach algebra and ¢ € A(A). Suppose that A is a ¢-
biprojective Banach algebra and L C ker ¢ is a closed ideal of A which is left essential as a
Banach A-bimodule. Then % s ¢-biprojective.

Proof. Since A is a ¢-biprojective Banach algebra, there exists a bounded A-bimodule mor-
phism p: A - A®, A such that poms0p(a) = ¢(a) for every a € A. Let ¢ : A — % be the
quotient map. Define py =id®qop: A =+ A®, %. Since L is an essential closed ideal of
A, for every | € L, we have

pi(l) =id @ qop(l) = id @ qo plal') = id © q(p(a) - I') =0,
where | = al’ for some a€ A and " € L. Hence there exists an induced map (which still
denoted by p1) p1 : % A®, L
Now define p2 =q ®fd% opy: % — % ®f %. We will show that ps is a bounded
£-bimodule morphism and ¢ o Ta o p2(z + L) = ¢(x + L). Suppose that z € A and p(z) =
Yoo, af ®@b¥ for some sequences (a )i and (b7); in A. Then po(x+L) = > o) af + LRI+ L,

i=1 %

soma opy(x+ L) = >oooq afb? + L, therefore

i=1 4 95
ZGW + L) ZW = $omaop(z) = (z) = Bz + L).
Now suppose that @+ L is an arbitrary element of 2. Then a+ L+ pa(z + L) = > | aa? +
L ® b7 + L. Since p is a left A-module morphism, p; is a left A-module morphism. Hence
p2(ax + L) =q®@ida opi(ax+ L) = q®ida(a-pi(z + L))

=q® %Zlaa @b + L)

:ZaaerL@berL
i=1

o0
=a+L-Y a] +LOb +L

=1
=a+L-pa(x+L).

Similarly one can show that po is a right %—module morphism and the proof is complete. [
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We recall that m € A ®, A is a ¢-Johnson contraction for A, if a-m = m - a and
poma(m) =1, where a € A, for more details the reader referred to [16].

Let A be a Banach algebra and ¢ € A(A). A is left ¢-contractible if and only if there
exists an element m in A such that am = ¢(a)m and ¢(m) = 1, see [11] and [14]. Note that
the left ¢-contractibility of a Banach algebra A is equivalent to property that; the Banach
algebra C is a projective left Banach A-module with the following left action, a - z = ¢(a)z
for every a € A and z € C [14, Theorem 4.3].

Compare the following Theorem with [8, Theorem 5.13].

Theorem 3.1. Let G be a locally compact group, let w be a weight on G and let ¢g be the
augmentation character on L'(G,w). Then the following are equivalent
(i) LYG,w) is ¢o-biprojective;
(i) LY(G,w) is left ¢o-contractible;
(iii) G is compact.

Proof. (1)=(ii) Set A = L*(G,w) and L = ker ¢y. Let A be ¢g-biprojective. Since A has a
bounded approximate identity, L becomes a left essential Banach A-bimodule. Thus by the
proof of previous Proposition there exists a bounded left A-module morphism

A A
plizg)A@pz.

Since 4 = C, hence we have p; : C = A ®, C = A such that ¢ o T4 0 p1(c) = ¢o(c),
where ¢ € C. Set m = p(1) € A. Then ¢o(m) = ¢o(p(1)) = %OT(Ay% op(l) =1 and
a-p(l) =pla-1) = ¢po(a)p(l), where a € A. Hence A is left ¢p-contractible.

(ii)=-(iii) Suppose that A is a left ¢p-contractible Banach algebra. Then there exists

an element m € A such that am = ¢g(a)m and ¢g(m) = 1, where a € A. Let g € G be an
arbitrary element and f € A\ L. Hence

¢0(f)5g*m:6g*(f*m):(59*f)*m:¢0(6g*f>m:¢0(f)m-

Hence m is constant and belongs to A, which implies that [, w(z)dz < co. Therefore

|G| :/ w(e)dr < oo,
G

so G is a compact group.

(iii)=-(i) Let G be a compact group and consider a normalized left Haar measure.
Thenm =1®1 in A®, A satisfies a-m = m-a = ¢g(a)m and ¢pgoms(m) = 1, where a € A.
Thus A is ¢o-Johnson contractible. Hence [16, Lemma 3.2] gives ¢o-biprojectivity of A. O

It is easy to see that every biprojective Banach algebra A is ¢-biprojective for every
¢ € A(A), but the converse is not always true. On the other hand [15, Theorem 5.2.30]
asserts that, if A is biprojective, then for every Banach A-bimodule X, H"(A,X) = 0,
where n > 3. This question maybe asked ”what will happen, if A is ¢-biprojective?” at the
following corollary we answer this question for the group algebras.

Corollary 3.1. Let G be a locally compact group.
(i) If LY(G) is ¢o-biprojective, then for every Banach L*(G)-bimodule X, H"(L*(G), X) =
0, where n > 3.
(i) LY(G) is ¢o-biprojective if and only if H' (L (G),X) = 0, for every Banach L'(G)-
bimodule X with x - a = ¢o(a)x such that a € L*(G) and z € X.

Proof. (i) Let L*(G) be ¢g-biprojective. Then by Theorem 3.1 G is compact and [15] shows
that L*(G) is biprojective for every compact group G. Now using [15, Theorem 5.2.30] one
can get the results.

(ii) holds by Theorem 3.1. O
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For a Banach algebra A, dbA denoted for the minimum values of n € Z* such that
A* has a projective resolution of length n, see [2, page 294]. Helemskii showed that for a
biprojective Banach algebra A, dbA < 2, see [2, Theorem 2.8.56]. Also it is well-known that
LY(G) is biprojective if and only if G is compact. Combine these facts and the previous
corollary one can see that if L'(G) is ¢o-biprojective, then dbL'(G) < 2.

4. ¢-homological properties of semigroup algebras

We remind that S is a left (right) amenable semigroup if there exists an element
m € £1(S)** such that

sem=m (m-s=m), |[m||=m(p)=1 (s €5),

where ¢ is the augmentation character of £!(S), respectively. The semigroup S is called
amenable, if it is both left and right amenable.

We recall that S is a band semigroup, if S = E(S). A band semigroup S is called
rectangular band if zyz = =z, for every z,y € S. In this case there exists an equivalence
relation on S, in fact

aRb <= S'aS' = S'bS", (a,b € S),

where S' = SU {1} [10]. Let A be a Banach algebra and A be a semilattice. Suppose that
{Ax : X € A} is a collection of closed subalgebra of A. If A is a ¢!-direct sum of A as
a Banach space and Ay, Ay, C Ay,x,, then A is called ¢'-graded of A,’s and denoted by
@g\l A/\.

We say that A is character-Johnson amenable (character-Johnson contracatible), if
for every ¢ € A(A), A is ¢-Johnson amenable (¢-Johnson contractible), respectively.

Theorem 4.1. Suppose that S is a band semigroup. Let (*(S) be character Johnson-
amenable. Then S is a semilattice, so is amenable.

Proof. Let S be a band semigroup. Then by [10, Theorem 4.4.1] S = UxeaSx, where
Sy is a rectangular band semigroup for every A € A. Since Sy, Sy, € Sx;x,, we have
(8) = @ﬁ\lEl (Sy), here the index set A is a semilattice.

Set I = @f\l@\o 0*(Sy), where \g € A is fixed. One can easily see that I is a closed ideal
of £1(S). Since £*(S),) is a homomorphic image of I. For every ¢ € A(£1(S),)) we take ¢on
as a character on I, which we denote it by ¢r, where n : I — ¢1(S),) is a homomorphism
with a dense range. It is easy to see that ¢; can be extend to ¢1(S) which is denoted by ¢g

Moreover, there exists an isomorphism between Sy, and L x R, where L and R are
denoted for a left-zero semigroup and a right-zero semigroup, respectively [10, Theorem
1.1.3]. Also we have

01(Sy,) = (L x R) = (L) @, L' (R).

Take ¢ = ¢p ® 09 € A(£1(Sy,)), where ¢g and og are the augmentation characters on ¢! (L)
and /!(R), respectively. Consider ¢; and ¢g corresponding to ¢ as before. Since ¢!(S) is
character Johnson-amenable, by [16, Proposition 2.2] £*(S) is left ¢s-amenable and right
¢s-amenable. Since ¢sle(s,,) # 0, we have ¢y # 0, so by [12, Lemma 3.1] I is left ¢;-
amenable and right ¢;-amenable. But, since ¢1(S),) is a homomorphic image of I, by [12,
Proposition 3.5] ¢1(S),) is left g-amenable and right ¢-amenable. Hence by [12, Theorem
3.3] £*(L) is left ¢p-amenable and ¢! (R) is right op-amenable. So [12, Theorem 1.4] shows
that there exists a net (mg,)q in £1(L) such that

ame — ¢o(a)me, AU, 0, ¢(mq)=1. (1)

Replace a1 = d5, and as = J;, in (1) instead of a, respectively for every s1,s2 € L. One can
see that my — ds, and my — ds,, which implies that L and similarly R are singleton, then
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S, is singleton and therefore with the same argument we can show that S is singleton for
every A € A. Hence S = Uycp Sy is isomorphic to A. Since every semilattice is commutative,
S is amenable and the proof is complete. O

We recall that A is a pseudo-amenable Banach algebra, if there exists a (not necessarily

bounded) net (mq)q in A ®, A such that a - ms —mq - a M> 0 and w4 (my)a M) a, for

every a € A, see [7].
Using [4, Corollary 3.5] and previous Theorem, we get the following corollary.

Corollary 4.1. Let S be a uniformly locally finite band semigroup. Then (1(S) is pseudo-
amenable if and only if £1(S) is character Johnson-amenable.

Note that in the general case, the pseudo-amenability is not equivalent with the
character Johnson-amenability. To see this we give the following example.

Example 4.1. Suppose that G is a compact infinite group. Then by [7, Proposition 4.2]
LY(G)** is not pseudo-amenable. The set of all continuous character p : G — T is denoted

by G. It is well-known that every character ¢ € A(LY(G)) is of the form

oulf) = /G @)/ (),

where dx is a left Haar measure on G, for more details, see |9, Theorem 23.7]. It is also well-
known that ¢, has a unique extension to L'(G)™", which denoted by ¢,. Hence A(L*(G)™)
consists of all ép, for every p € G. Since G is compact, GcC L>(G) C LY(G). Define m, =
p@p e LNG)®, LY(G). Since two maps a — ap and a — pa are w*-continuous on L'(G)"™
for every a € LY(G)™", one can easily see that a - m, = m, - a and ¢~>p o ﬂZ’i(G)**(mp) =1

Hence L'(G)"™" is character Johnson-amenable.

It is well-known that for an inverse semigroup S there exists an equivalence relation
R on S, that is, for every z,y € S, Ry if and only if there exits e € E(S) such that es = et.
Consider Gg = 2, see [13].

Proposition 4.1. Let S be an inverse semigroup. If £1(S) is character Johnson-amenable,
then Gg is an amenable group.

Proof. Since Gg is a quotient of S, then ¢!(Gs) is a homomorphic image of £*(.S). Suppose
that ¢ € A(f*(Gg)) and p : £2(S) — £}(Gs) is a dense range homomorphism. Since ¢1(.S) is
character Johnson amenable, £1(S) is ¢ op-Johnson amenable. Now by [16, Proposition 2.2],
(1(9) is left ¢op-amenable. Hence [12, Proposition 3.5] shows that ¢1(G) is left ¢-amenable.
Now by applying [1, Corollary 3.4] Gg must be amenable. O

Let G be a group and I be a non-empty set. Set M°(G,I) = {(9)ijlg € G,i,j €
I} U {0}, where (g);; is denoted for I x I matrix with entry g in (4, j)""-position and zero
elsewhere. With the following multiplication M°(G, I) is a semigroup

- o (gh)il lf ] = k
This semigroup is called Brandt semigroup over G with index set I. It is well-known that

for S = M°(G, 1), Gs =G.

Corollary 4.2. Let G be a group and I be a non-empty set and also let S = M°(G, I). If
01(S) is character Johnson amenable, then (*(S) is pseudo-amenable.

Proof. Let ¢£1(S) be character Johnson amenable. By previous Proposition G's = G must
be amenable. Now apply [5, Corollary 3.8] to show that £!(.S) is pseudo-amenable. O
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Proposition 4.2. Let S be an inverse semigroup. If ¢*(S) is character Johnson-contractible,
then Gg is finite.

Proof. Use the same argument as in the proof of pervious Proposition and the fact that
1 (Gg) is left ¢-contractible if and only if Gg is finite, see [1, Theorem 3.3]. O

Remark 4.1. The results of the previous two propositions hold even if we replace the hy-
pothesis “A is left p-amenable (¢-contractible)” instead of “A is character Johnson amenable
(character Johnson contractible)” respectively for every ¢ € A(A).

Proposition 4.3. Let S be a semigroup such that its center Z(S) is non-empty. If £1(S)
is ¢-biflat, then S is amenable, where ¢ is the augmentation character on £1(S).

Proof. Suppose that ¢1(S) is ¢-biflat, where ¢ is the augmentation character on ¢1(S).
Let p : 1(S) — (£*(S) ®, £*(S))** be a bounded ¢'(S)-bimodule morphism such that
¢ omis) ©pla) = ¢(a), for every a € 1(S). Set mg = p(ds,), where sg € Z(9), it is easy
to see that 0, - mo = mg - 85 and ¢ o wZ{k(S)(mo) = 1. Then £*(S) is ¢-Johnson amenable.
Applying the same arguments as in the proof of [16, Proposition 2.2], one can show that
ds-my = mg - 05 = mg and ¢ o wzl*(s)(mo) = 1. Suppose that m = WZI*(S)(mO) € 11(S)*.
Hence we have d;m = mds = m and qg(m) = 1. Hence S is an amenable semigroup, see [12,
Theorem 1.1]. O

Proposition 4.4. Let S be a semigroup such that Z(S) is non-empty. If £*(S) is ¢-
biprojective and S has left or right unit, then S is finite, where ¢ is the augmentation
character on €+(S).

Proof. Suppose that £*(S) is ¢-biprojective, where ¢ is the augmentation character on £1(S).
Then there exists a bounded ¢*(S)-bimodule morphism p : £1(S) — £*(S) ®,£*(S) such that
¢ omp sy o pla) = ¢(a), for every a € £1(S).

Define m = mp1(g) o p(ds,), where so € Z(S). Then we have d,m = mds = m and
¢(m) = 1. Now if e, is a right unit for S, then for every s € S we have

m(s) = m(se.) = dsm(er) = m(e,),
that is, m € ¢1(9) is a constant function on S , so S must be finite. O

Remark 4.2. There exists a biprojective semigroup algebra which is not character Johnson
amenable. To see this let S be an infinite left zero semigroup, that is, st = s for every
s,t € S. It is easy to see that

fa=0s(9)f, f.g€l(S),

where ¢g is the augmentation character on (*(S). Define p : £1(S) — £1(S) @, £1(S) by
p(f) = f®fo. It is easy to see that p is a bounded A-bimodule morphism which Ty (syop(f) =
f for every f € £1(S). It follows that £*(S) is biprojective. Now using the same method as
in the proof of 4.1 one can see that £*(S) is not character Johnson amenable. Note that in
the previous Proposition the hypothesis “Z(S) # 07 is necessary. It is easy to see that for a
left zero semigroup S, Z(S) = 0. Also one can show that for the augmentation character ¢,
1(S) is ¢-biprojective, but S is not finite.

Also note that the hypothesis “existence of left or right unit” is necessary. To see this
let S = N with the product m - n = min{m,n} (m,n € S) which is an infinite semigroup
with no unit such that Z(S) = S [16, Example 5.2] and (1(S) is ¢-biprojective, where ¢ is
the augmentation character.
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