

ON HOMOLOGICAL NOTIONS OF BANACH ALGEBRAS RELATED TO A CHARACTER

A. Sahami¹

In this paper, we continue our work in [16]. We show that $L^1(G, w)$ is ϕ_0 -biprojective if and only if G is compact, where ϕ_0 is the augmentation character. We introduce the notions of character Johnson amenability and character Johnson contractibility for Banach algebras. We show that $\ell^1(S)$ is pseudo-amenable if and only if $\ell^1(S)$ is character Johnson-amenable, provided that S is a uniformly locally finite band semigroup. We give some conditions whether ϕ -biprojectivity (ϕ -biflatness) of $\ell^1(S)$ implies the finiteness (amenability) of S , respectively.

Keywords: Beurling algebras, semigroup algebras, ϕ -biprojective, ϕ -contractible, amenability.

MSC2010: Primary 43A07, 43A20, Secondary 46H05, 46M10.

1. Introduction

Helemskii studied Banach algebras via the Banach homology theory. In order to his investigation, he defined biflat and biprojective Banach algebras. Indeed, A is called biflat (biprojective), if there exists a bounded A -bimodule morphism $\rho : A \rightarrow (A \otimes_p A)^{**}$ ($\rho : A \rightarrow A \otimes_p A$) such that $\pi^{**} \circ \rho$ is the canonical embedding of A into A^{**} (ρ is a right inverse for π), respectively, see [15]. He showed that $L^1(G)$ is a biflat Banach algebra if and only if G is amenable and also $L^1(G)$ is biprojective if and only if G is compact, see [8].

Recently, Kanuith et al. in [12] have been used this idea and defined a new notion of amenability for Banach algebra depended on a character of that Banach algebra. Indeed, for a character $\phi \in \Delta(A)$, they defined the new notion of left ϕ -amenability, that is, A is left ϕ -amenable Banach algebra if $\mathcal{H}^1(A, X^*) = \{0\}$, for every Banach A -bimodule X , provided that $a \cdot x = \phi(a)x$, for all $a \in A$ and $x \in X$. They also showed that the Fourier algebra $A(G)$ is ϕ -amenable for each $\phi \in \Delta(A)$. Hu et al. in [11] used the idea of virtual diagonal of Banach algebras and defined a parallel notion to left ϕ -amenability and called it left ϕ -contractibility. This theory has been under more investigations, Sangani Monfared in [18] defined the concept of character amenability which used every character of a Banach algebra to studying its properties. He showed that $L^1(G)$ is character amenable if and only if G is amenable. Recently Nasr-Isfahani et al. has been investigated the notions of left ϕ -amenability and left ϕ -contractibility in the Banach homology terms, see [14].

Motivated by these considerations, in order to find biflatness and biprojectivity related to a character the author with A. Pourabbas defined the notions of ϕ -biflatness, ϕ -biprojectivity and ϕ -Johnson amenability for Banach algebras, see [16]. They showed that for a locally compact group G , $L^1(G)$ is ϕ -biflat if and only if G is amenable. Also they showed that the Fourier algebra $A(G)$ is ϕ -biprojective if and only if G is discrete. For a discrete group G , they showed that $\ell^1(G)$ is ϕ -biprojective if and only if G is finite.

Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.
E-mail: a.sahami@ilam.ac.ir

The content of this paper is as follows, after recalling some definitions and background notations. We extend [16, Lemma 4.2] to Beurling algebras. We show that $L^1(G, w)$ is ϕ_0 -biprojective if and only if G is compact, where ϕ_0 is the augmentation character.) We introduce character Johnson amenability and character Johnson contractibility for Banach algebras. We show that $\ell^1(S)$ is pseudo-amenable if and only if $\ell^1(S)$ is character Johnson-amenable, provided that S is a uniformly locally finite band semigroup. We give some conditions whether ϕ -biprojectivity (ϕ -biflatness) of $\ell^1(S)$ implies the finiteness (amenability) of S , respectively.

2. Preliminaries

We recall that if X is a Banach A -bimodule, then with the following actions X^* is also a Banach A -bimodule

$$(a \cdot f)(x) = f(x \cdot a), \quad (f \cdot a)(x) = f(a \cdot x) \quad (a \in A, x \in X, f \in X^*).$$

Let A and B be Banach algebras. The projective tensor product of A and B is denoted by $A \otimes_p B$ and with the following multiplication is a Banach algebra

$$(a_1 \otimes b_1)(a_2 \otimes b_2) = a_1 a_2 \otimes b_1 b_2 \quad (a_1, a_2 \in A, \quad b_1, b_2 \in B).$$

The Banach algebra $A \otimes_p A$ with the following actions is a Banach A -bimodule

$$a \cdot (b \otimes c) = ab \otimes c, \quad (b \otimes c) \cdot a = b \otimes ca \quad (a, b, c \in A).$$

Throughout, the character space of A is denoted by $\Delta(A)$. Let $\phi \in \Delta(A)$. Then ϕ has a unique extension to A^{**} denoted by $\tilde{\phi}$ and defined by $\tilde{\phi}(F) = F(\phi)$ for every $F \in A^{**}$. Clearly this extension remains to be a character on A^{**} . We denote $\pi_A : A \otimes_p A \rightarrow A$ for the product morphism which specified by $\pi_A(a \otimes b) = ab$.

Let A be a Banach algebra and X be a Banach A -bimodule. The n^{th} cohomology group of A with coefficients in X is denoted by $\mathcal{H}^n(A, X)$. In fact A is an amenable Banach algebra, if $\mathcal{H}^1(A, X^*) = \{0\}$ for every Banach A -bimodule X .

The Banach algebra A is called ϕ -biprojective (ϕ -biflat), if there exists a bounded A -bimodule morphism $\rho : A \rightarrow A \otimes_p A$ ($\rho : A \rightarrow (A \otimes_p A)^{**}$) such that

$$\phi \circ \pi_A \circ \rho(a) = \phi(a) \quad (\tilde{\phi} \circ \pi_A^{**} \circ \rho(a) = \phi(a)),$$

respectively for every $a \in A$. A Banach algebra A is called ϕ -Johnson amenable (ϕ -Johnson contractible) if there exists $m \in (A \otimes_p A)^{**}$ ($m \in A \otimes_p A$) such that

$$a \cdot m = m \cdot a, \quad \tilde{\phi} \circ \pi_A^{**}(m) = 1, \quad (\phi \circ \pi_A(m) = 1) \quad (a \in A),$$

respectively for every $a \in A$. For more details, we refer the readers to [16].

Let G be a locally compact group. A continuous map $w : G \rightarrow \mathbb{R}^+$ is called a weight function, if $w(e) = 1$ and for every x and y in G , $w(xy) \leq w(x)w(y)$ and $w(x) \geq 1$. The Banach algebra of all measurable functions f from G into \mathbb{C} with $\|f\|_w = \int_G |f(x)|w(x)dx < \infty$ and the convolution product is denoted by $L^1(G, w)$. The Banach algebra of all complex-valued, regular and Borel measures μ on G such that $\|\mu\|_w = \int_G w(x)d|\mu|(x) < \infty$ is denoted by $M(G, w)$. We write $M(G)$, whenever $w = 1$. The map $\phi_0 : L^1(G, w) \rightarrow \mathbb{C}$ which specified by

$$\phi_0(f) = \int_G f(x)dx$$

is called augmentation character, for more details see [3].

We recall that S is an inverse semigroup, if for each $s \in S$ there exists a unique element $s^* \in S$ such that $ss^*s = s$ and $s^*ss^* = s^*$ [10]. The set of idempotents of a semigroup S is denoted by $E(S)$. There exists a partial order on $E(S)$, indeed

$$s \leq t \iff s = st = ts \quad (s, t \in E(S)).$$

If S is an inverse semigroup, then there exists a partial order on S which is coincide with the partial order on $E(S)$. Indeed

$$s \leq t \iff s = ss^*t \quad (s, t \in S).$$

For the partially ordered set (S, \leq) , we denote $(x] = \{y \in S \mid y \leq x\}$. The set S is called locally finite (uniformly locally finite) if for every $x \in S$, we have $|(x]| < \infty$ ($\sup\{|(x)| \mid x \in S\} < \infty$), respectively.

3. ϕ -biprojectivity of Beurling algebras

Let A be a Banach algebra and let L be a closed ideal of A . We say that L is left essential as a Banach A -bimodule, if $\overline{AL} = L$.

Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that $L \subseteq \ker \phi$ is a closed ideal of A . Clearly ϕ induces a character $\bar{\phi}$ on $\frac{A}{L}$, which is defined by $\bar{\phi}(x + L) = \phi(x)$ for every $x \in A$.

Proposition 3.1. *Let A be a Banach algebra and $\phi \in \Delta(A)$. Suppose that A is a ϕ -biprojective Banach algebra and $L \subseteq \ker \phi$ is a closed ideal of A which is left essential as a Banach A -bimodule. Then $\frac{A}{L}$ is $\bar{\phi}$ -biprojective.*

Proof. Since A is a ϕ -biprojective Banach algebra, there exists a bounded A -bimodule morphism $\rho : A \rightarrow A \otimes_p A$ such that $\phi \circ \pi_A \circ \rho(a) = \phi(a)$ for every $a \in A$. Let $q : A \rightarrow \frac{A}{L}$ be the quotient map. Define $\rho_1 = id \otimes q \circ \rho : A \rightarrow A \otimes_p \frac{A}{L}$. Since L is an essential closed ideal of A , for every $l \in L$, we have

$$\rho_1(l) = id \otimes q \circ \rho(l) = id \otimes q \circ \rho(al') = id \otimes q(\rho(a) \cdot l') = 0,$$

where $l = al'$ for some $a \in A$ and $l' \in L$. Hence there exists an induced map (which still denoted by ρ_1) $\rho_1 : \frac{A}{L} \rightarrow A \otimes_p \frac{A}{L}$.

Now define $\rho_2 = q \otimes id_{\frac{A}{L}} \circ \rho_1 : \frac{A}{L} \rightarrow \frac{A}{L} \otimes_p \frac{A}{L}$. We will show that ρ_2 is a bounded $\frac{A}{L}$ -bimodule morphism and $\bar{\phi} \circ \pi_{\frac{A}{L}} \circ \rho_2(x + L) = \bar{\phi}(x + L)$. Suppose that $x \in A$ and $\rho(x) = \sum_{i=1}^{\infty} a_i^x \otimes b_i^x$ for some sequences $(a_i^x)_i$ and $(b_i^x)_i$ in A . Then $\rho_2(x + L) = \sum_{i=1}^{\infty} a_i^x + L \otimes b_i^x + L$, so $\pi_{\frac{A}{L}} \circ \rho_2(x + L) = \sum_{i=1}^{\infty} a_i^x b_i^x + L$, therefore

$$\bar{\phi}\left(\sum_{i=1}^{\infty} a_i^x b_i^x + L\right) = \phi\left(\sum_{i=1}^{\infty} a_i^x b_i^x\right) = \phi \circ \pi_A \circ \rho(x) = \phi(x) = \bar{\phi}(x + L).$$

Now suppose that $a + L$ is an arbitrary element of $\frac{A}{L}$. Then $a + L \cdot \rho_2(x + L) = \sum_{i=1}^{\infty} a a_i^x + L \otimes b_i^x + L$. Since ρ is a left A -module morphism, ρ_1 is a left A -module morphism. Hence

$$\begin{aligned} \rho_2(ax + L) &= q \otimes id_{\frac{A}{L}} \circ \rho_1(ax + L) = q \otimes id_{\frac{A}{L}}(a \cdot \rho_1(x + L)) \\ &= q \otimes id_{\frac{A}{L}}\left(\sum_{i=1}^{\infty} a a_i^x \otimes b_i^x + L\right) \\ &= \sum_{i=1}^{\infty} a a_i^x + L \otimes b_i^x + L \\ &= a + L \cdot \sum_{i=1}^{\infty} a_i^x + L \otimes b_i^x + L \\ &= a + L \cdot \rho_2(x + L). \end{aligned}$$

Similarly one can show that ρ_2 is a right $\frac{A}{L}$ -module morphism and the proof is complete. \square

We recall that $m \in A \otimes_p A$ is a ϕ -Johnson contraction for A , if $a \cdot m = m \cdot a$ and $\phi \circ \pi_A(m) = 1$, where $a \in A$, for more details the reader referred to [16].

Let A be a Banach algebra and $\phi \in \Delta(A)$. A is left ϕ -contractible if and only if there exists an element m in A such that $am = \phi(a)m$ and $\phi(m) = 1$, see [11] and [14]. Note that the left ϕ -contractibility of a Banach algebra A is equivalent to property that; the Banach algebra \mathbb{C} is a projective left Banach A -module with the following left action, $a \cdot z = \phi(a)z$ for every $a \in A$ and $z \in \mathbb{C}$ [14, Theorem 4.3].

Compare the following Theorem with [8, Theorem 5.13].

Theorem 3.1. *Let G be a locally compact group, let ω be a weight on G and let ϕ_0 be the augmentation character on $L^1(G, w)$. Then the following are equivalent*

- (i) $L^1(G, w)$ is ϕ_0 -biprojective;
- (ii) $L^1(G, w)$ is left ϕ_0 -contractible;
- (iii) G is compact.

Proof. (i) \Rightarrow (ii) Set $A = L^1(G, w)$ and $L = \ker \phi_0$. Let A be ϕ_0 -biprojective. Since A has a bounded approximate identity, L becomes a left essential Banach A -bimodule. Thus by the proof of previous Proposition there exists a bounded left A -module morphism

$$\rho_1 : \frac{A}{L} \rightarrow A \otimes_p \frac{A}{L}.$$

Since $\frac{A}{L} \cong \mathbb{C}$, hence we have $\rho_1 : \mathbb{C} \rightarrow A \otimes_p \mathbb{C} \cong A$ such that $\overline{\phi_0} \circ \pi_{A, \frac{A}{L}} \circ \rho_1(c) = \overline{\phi_0}(c)$, where $c \in \mathbb{C}$. Set $m = \rho_1(1) \in A$. Then $\phi_0(m) = \phi_0(\rho_1(1)) = \overline{\phi_0} \circ \pi_{A, \frac{A}{L}} \circ \rho_1(1) = 1$ and $a \cdot \rho_1(1) = \rho_1(a \cdot 1) = \phi_0(a)\rho_1(1)$, where $a \in A$. Hence A is left ϕ_0 -contractible.

(ii) \Rightarrow (iii) Suppose that A is a left ϕ_0 -contractible Banach algebra. Then there exists an element $m \in A$ such that $am = \phi_0(a)m$ and $\phi_0(m) = 1$, where $a \in A$. Let $g \in G$ be an arbitrary element and $f \in A \setminus L$. Hence

$$\phi_0(f)\delta_g * m = \delta_g * (f * m) = (\delta_g * f) * m = \phi_0(\delta_g * f)m = \phi_0(f)m.$$

Hence m is constant and belongs to A , which implies that $\int_G w(x)dx < \infty$. Therefore

$$|G| = \int_G w(e)dx < \infty,$$

so G is a compact group.

(iii) \Rightarrow (i) Let G be a compact group and consider a normalized left Haar measure. Then $m = 1 \otimes 1$ in $A \otimes_p A$ satisfies $a \cdot m = m \cdot a = \phi_0(a)m$ and $\phi_0 \circ \pi_A(m) = 1$, where $a \in A$. Thus A is ϕ_0 -Johnson contractible. Hence [16, Lemma 3.2] gives ϕ_0 -biprojectivity of A . \square

It is easy to see that every biprojective Banach algebra A is ϕ -biprojective for every $\phi \in \Delta(A)$, but the converse is not always true. On the other hand [15, Theorem 5.2.30] asserts that, if A is biprojective, then for every Banach A -bimodule X , $\mathcal{H}^n(A, X) = 0$, where $n \geq 3$. This question maybe asked "what will happen, if A is ϕ -biprojective?" at the following corollary we answer this question for the group algebras.

Corollary 3.1. *Let G be a locally compact group.*

- (i) *If $L^1(G)$ is ϕ_0 -biprojective, then for every Banach $L^1(G)$ -bimodule X , $\mathcal{H}^n(L^1(G), X) = 0$, where $n \geq 3$.*
- (ii) *$L^1(G)$ is ϕ_0 -biprojective if and only if $\mathcal{H}^1(L^1(G), X) = 0$, for every Banach $L^1(G)$ -bimodule X with $x \cdot a = \phi_0(a)x$ such that $a \in L^1(G)$ and $x \in X$.*

Proof. (i) Let $L^1(G)$ be ϕ_0 -biprojective. Then by Theorem 3.1 G is compact and [15] shows that $L^1(G)$ is biprojective for every compact group G . Now using [15, Theorem 5.2.30] one can get the results.

(ii) holds by Theorem 3.1. \square

For a Banach algebra A , dbA denotes for the minimum values of $n \in \mathbb{Z}^+$ such that A^\sharp has a projective resolution of length n , see [2, page 294]. Helemskii showed that for a biprojective Banach algebra A , $dbA \leq 2$, see [2, Theorem 2.8.56]. Also it is well-known that $L^1(G)$ is biprojective if and only if G is compact. Combine these facts and the previous corollary one can see that if $L^1(G)$ is ϕ_0 -biprojective, then $dbL^1(G) \leq 2$.

4. ϕ -homological properties of semigroup algebras

We remind that S is a left (right) amenable semigroup if there exists an element $m \in \ell^1(S)^{**}$ such that

$$s \cdot m = m \quad (m \cdot s = m), \quad \|m\| = m(\phi) = 1 \quad (s \in S),$$

where ϕ is the augmentation character of $\ell^1(S)$, respectively. The semigroup S is called amenable, if it is both left and right amenable.

We recall that S is a band semigroup, if $S = E(S)$. A band semigroup S is called rectangular band if $xyx = x$, for every $x, y \in S$. In this case there exists an equivalence relation on S , in fact

$$aRb \iff S^1 a S^1 = S^1 b S^1, \quad (a, b \in S),$$

where $S^1 = S \cup \{1\}$ [10]. Let A be a Banach algebra and Λ be a semilattice. Suppose that $\{A_\lambda : \lambda \in \Lambda\}$ is a collection of closed subalgebra of A . If A is a ℓ^1 -direct sum of A_λ as a Banach space and $A_{\lambda_1} A_{\lambda_2} \subseteq A_{\lambda_1 \lambda_2}$, then A is called ℓ^1 -graded of A_λ 's and denoted by $\bigoplus_\lambda^{\ell^1} A_\lambda$.

We say that A is character-Johnson amenable (character-Johnson contractible), if for every $\phi \in \Delta(A)$, A is ϕ -Johnson amenable (ϕ -Johnson contractible), respectively.

Theorem 4.1. *Suppose that S is a band semigroup. Let $\ell^1(S)$ be character Johnson-amenable. Then S is a semilattice, so is amenable.*

Proof. Let S be a band semigroup. Then by [10, Theorem 4.4.1] $S = \cup_{\lambda \in \Lambda} S_\lambda$, where S_λ is a rectangular band semigroup for every $\lambda \in \Lambda$. Since $S_{\lambda_1} S_{\lambda_2} \subseteq S_{\lambda_1 \lambda_2}$, we have $\ell^1(S) = \bigoplus_\lambda^{\ell^1} \ell^1(S_\lambda)$, here the index set Λ is a semilattice.

Set $I = \bigoplus_{\lambda \leq \lambda_0}^{\ell^1} \ell^1(S_\lambda)$, where $\lambda_0 \in \Lambda$ is fixed. One can easily see that I is a closed ideal of $\ell^1(S)$. Since $\ell^1(S_{\lambda_0})$ is a homomorphic image of I . For every $\phi \in \Delta(\ell^1(S_{\lambda_0}))$ we take $\phi \circ \eta$ as a character on I , which we denote it by ϕ_I , where $\eta : I \rightarrow \ell^1(S_{\lambda_0})$ is a homomorphism with a dense range. It is easy to see that ϕ_I can be extend to $\ell^1(S)$ which is denoted by ϕ_S .

Moreover, there exists an isomorphism between S_{λ_0} and $L \times R$, where L and R are denoted for a left-zero semigroup and a right-zero semigroup, respectively [10, Theorem 1.1.3]. Also we have

$$\ell^1(S_{\lambda_0}) \cong \ell^1(L \times R) \cong \ell^1(L) \otimes_p \ell^1(R).$$

Take $\phi = \phi_0 \otimes \sigma_0 \in \Delta(\ell^1(S_{\lambda_0}))$, where ϕ_0 and σ_0 are the augmentation characters on $\ell^1(L)$ and $\ell^1(R)$, respectively. Consider ϕ_I and ϕ_S corresponding to ϕ as before. Since $\ell^1(S)$ is character Johnson-amenable, by [16, Proposition 2.2] $\ell^1(S)$ is left ϕ_S -amenable and right ϕ_S -amenable. Since $\phi_S|_{\ell^1(S_{\lambda_0})} \neq 0$, we have $\phi_I \neq 0$, so by [12, Lemma 3.1] I is left ϕ_I -amenable and right ϕ_I -amenable. But, since $\ell^1(S_{\lambda_0})$ is a homomorphic image of I , by [12, Proposition 3.5] $\ell^1(S_{\lambda_0})$ is left ϕ -amenable and right ϕ -amenable. Hence by [12, Theorem 3.3] $\ell^1(L)$ is left ϕ_0 -amenable and $\ell^1(R)$ is right σ_0 -amenable. So [12, Theorem 1.4] shows that there exists a net $(m_\alpha)_\alpha$ in $\ell^1(L)$ such that

$$am_\alpha - \phi_0(a)m_\alpha \xrightarrow{\|\cdot\|} 0, \quad \phi(m_\alpha) = 1. \quad (1)$$

Replace $a_1 = \delta_{s_1}$ and $a_2 = \delta_{s_2}$ in (1) instead of a , respectively for every $s_1, s_2 \in L$. One can see that $m_\alpha \rightarrow \delta_{s_1}$ and $m_\alpha \rightarrow \delta_{s_2}$, which implies that L and similarly R are singleton, then

S_{λ_0} is singleton and therefore with the same argument we can show that S_λ is singleton for every $\lambda \in \Lambda$. Hence $S = \cup_{\lambda \in \Lambda} S_\lambda$ is isomorphic to Λ . Since every semilattice is commutative, S is amenable and the proof is complete. \square

We recall that A is a pseudo-amenable Banach algebra, if there exists a (not necessarily bounded) net $(m_\alpha)_\alpha$ in $A \otimes_p A$ such that $a \cdot m_\alpha - m_\alpha \cdot a \xrightarrow{\|\cdot\|} 0$ and $\pi_A(m_\alpha)a \xrightarrow{\|\cdot\|} a$, for every $a \in A$, see [7].

Using [4, Corollary 3.5] and previous Theorem, we get the following corollary.

Corollary 4.1. *Let S be a uniformly locally finite band semigroup. Then $\ell^1(S)$ is pseudo-amenable if and only if $\ell^1(S)$ is character Johnson-amenable.*

Note that in the general case, the pseudo-amenable is not equivalent with the character Johnson-amenable. To see this we give the following example.

Example 4.1. *Suppose that G is a compact infinite group. Then by [7, Proposition 4.2] $L^1(G)^{**}$ is not pseudo-amenable. The set of all continuous character $\rho : G \rightarrow \mathbb{T}$ is denoted by \widehat{G} . It is well-known that every character $\phi \in \Delta(L^1(G))$ is of the form*

$$\phi_\rho(f) = \int_G \overline{\rho(x)} f(x) dx,$$

where dx is a left Haar measure on G , for more details, see [9, Theorem 23.7]. It is also well-known that ϕ_ρ has a unique extension to $L^1(G)^{**}$, which denoted by $\tilde{\phi}_\rho$. Hence $\Delta(L^1(G)^{**})$ consists of all $\tilde{\phi}_\rho$, for every $\rho \in \widehat{G}$. Since G is compact, $\widehat{G} \subset L^\infty(G) \subseteq L^1(G)$. Define $m_\rho = \rho \otimes \rho \in L^1(G) \otimes_p L^1(G)$. Since two maps $a \mapsto a\rho$ and $a \mapsto \rho a$ are w^* -continuous on $L^1(G)^{**}$ for every $a \in L^1(G)^{**}$, one can easily see that $a \cdot m_\rho = m_\rho \cdot a$ and $\tilde{\phi}_\rho \circ \pi_{L^1(G)^{**}}(m_\rho) = 1$. Hence $L^1(G)^{**}$ is character Johnson-amenable.

It is well-known that for an inverse semigroup S there exists an equivalence relation \mathcal{R} on S , that is, for every $x, y \in S$, $x\mathcal{R}y$ if and only if there exists $e \in E(S)$ such that $es = et$. Consider $G_S = \frac{S}{\mathcal{R}}$, see [13].

Proposition 4.1. *Let S be an inverse semigroup. If $\ell^1(S)$ is character Johnson-amenable, then G_S is an amenable group.*

Proof. Since G_S is a quotient of S , then $\ell^1(G_S)$ is a homomorphic image of $\ell^1(S)$. Suppose that $\phi \in \Delta(\ell^1(G_S))$ and $p : \ell^1(S) \rightarrow \ell^1(G_S)$ is a dense range homomorphism. Since $\ell^1(S)$ is character Johnson amenable, $\ell^1(S)$ is $\phi \circ p$ -Johnson amenable. Now by [16, Proposition 2.2], $\ell^1(S)$ is left $\phi \circ p$ -amenable. Hence [12, Proposition 3.5] shows that $\ell^1(G)$ is left ϕ -amenable. Now by applying [1, Corollary 3.4] G_S must be amenable. \square

Let G be a group and I be a non-empty set. Set $\mathcal{M}^0(G, I) = \{(g)_{ij} | g \in G, i, j \in I\} \cup \{0\}$, where $(g)_{ij}$ is denoted for $I \times I$ matrix with entry g in $(i, j)^{th}$ -position and zero elsewhere. With the following multiplication $\mathcal{M}^0(G, I)$ is a semigroup

$$(g)_{ij}(h)_{kl} = \begin{cases} (gh)_{il} & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$$

This semigroup is called Brandt semigroup over G with index set I . It is well-known that for $S = \mathcal{M}^0(G, I)$, $G_S = G$.

Corollary 4.2. *Let G be a group and I be a non-empty set and also let $S = \mathcal{M}^0(G, I)$. If $\ell^1(S)$ is character Johnson amenable, then $\ell^1(S)$ is pseudo-amenable.*

Proof. Let $\ell^1(S)$ be character Johnson amenable. By previous Proposition $G_S = G$ must be amenable. Now apply [5, Corollary 3.8] to show that $\ell^1(S)$ is pseudo-amenable. \square

Proposition 4.2. *Let S be an inverse semigroup. If $\ell^1(S)$ is character Johnson-contractible, then G_S is finite.*

Proof. Use the same argument as in the proof of previous Proposition and the fact that $\ell^1(G_S)$ is left ϕ -contractible if and only if G_S is finite, see [1, Theorem 3.3]. \square

Remark 4.1. *The results of the previous two propositions hold even if we replace the hypothesis “ A is left ϕ -amenable (ϕ -contractible)” instead of “ A is character Johnson amenable (character Johnson contractible)” respectively for every $\phi \in \Delta(A)$.*

Proposition 4.3. *Let S be a semigroup such that its center $Z(S)$ is non-empty. If $\ell^1(S)$ is ϕ -biflat, then S is amenable, where ϕ is the augmentation character on $\ell^1(S)$.*

Proof. Suppose that $\ell^1(S)$ is ϕ -biflat, where ϕ is the augmentation character on $\ell^1(S)$. Let $\rho : \ell^1(S) \rightarrow (\ell^1(S) \otimes_p \ell^1(S))^{\ast\ast}$ be a bounded $\ell^1(S)$ -bimodule morphism such that $\tilde{\phi} \circ \pi_{\ell^1(S)}^{\ast\ast} \circ \rho(a) = \phi(a)$, for every $a \in \ell^1(S)$. Set $m_0 = \rho(\delta_{s_0})$, where $s_0 \in Z(S)$, it is easy to see that $\delta_s \cdot m_0 = m_0 \cdot \delta_s$ and $\tilde{\phi} \circ \pi_{\ell^1(S)}^{\ast\ast}(m_0) = 1$. Then $\ell^1(S)$ is ϕ -Johnson amenable. Applying the same arguments as in the proof of [16, Proposition 2.2], one can show that $\delta_s \cdot m_0 = m_0 \cdot \delta_s = m_0$ and $\tilde{\phi} \circ \pi_{\ell^1(S)}^{\ast\ast}(m_0) = 1$. Suppose that $m = \pi_{\ell^1(S)}^{\ast\ast}(m_0) \in \ell^1(S)^{\ast\ast}$. Hence we have $\delta_s m = m \delta_s = m$ and $\tilde{\phi}(m) = 1$. Hence S is an amenable semigroup, see [12, Theorem 1.1]. \square

Proposition 4.4. *Let S be a semigroup such that $Z(S)$ is non-empty. If $\ell^1(S)$ is ϕ -biprojective and S has left or right unit, then S is finite, where ϕ is the augmentation character on $\ell^1(S)$.*

Proof. Suppose that $\ell^1(S)$ is ϕ -biprojective, where ϕ is the augmentation character on $\ell^1(S)$. Then there exists a bounded $\ell^1(S)$ -bimodule morphism $\rho : \ell^1(S) \rightarrow \ell^1(S) \otimes_p \ell^1(S)$ such that $\phi \circ \pi_{\ell^1(S)} \circ \rho(a) = \phi(a)$, for every $a \in \ell^1(S)$.

Define $m = \pi_{\ell^1(S)} \circ \rho(\delta_{s_0})$, where $s_0 \in Z(S)$. Then we have $\delta_s m = m \delta_s = m$ and $\phi(m) = 1$. Now if e_r is a right unit for S , then for every $s \in S$ we have

$$m(s) = m(se_r) = \delta_s m(e_r) = m(e_r),$$

that is, $m \in \ell^1(S)$ is a constant function on S , so S must be finite. \square

Remark 4.2. *There exists a biprojective semigroup algebra which is not character Johnson amenable. To see this let S be an infinite left zero semigroup, that is, $st = s$ for every $s, t \in S$. It is easy to see that*

$$fg = \phi_S(g)f, \quad f, g \in \ell^1(S),$$

where ϕ_S is the augmentation character on $\ell^1(S)$. Define $\rho : \ell^1(S) \rightarrow \ell^1(S) \otimes_p \ell^1(S)$ by $\rho(f) = f \otimes f_0$. It is easy to see that ρ is a bounded A -bimodule morphism which $\pi_{\ell^1(S)} \circ \rho(f) = f$ for every $f \in \ell^1(S)$. It follows that $\ell^1(S)$ is biprojective. Now using the same method as in the proof of 4.1 one can see that $\ell^1(S)$ is not character Johnson amenable. Note that in the previous Proposition the hypothesis “ $Z(S) \neq \emptyset$ ” is necessary. It is easy to see that for a left zero semigroup S , $Z(S) = \emptyset$. Also one can show that for the augmentation character ϕ , $\ell^1(S)$ is ϕ -biprojective, but S is not finite.

Also note that the hypothesis “existence of left or right unit” is necessary. To see this let $S = \mathbb{N}$ with the product $m \cdot n = \min\{m, n\}$ ($m, n \in S$) which is an infinite semigroup with no unit such that $Z(S) = S$ [16, Example 5.2] and $\ell^1(S)$ is ϕ -biprojective, where ϕ is the augmentation character.

Acknowledgements The author is grateful to the anonymous reviewers for their careful reading which improved the manuscript.

REFERENCES

- [1] M. Alaghmandan, R. Nasr Isfahani, and M. Nemat, *Character amenability and contractibility of abstract Segal algebras*, Bull. Aust. Math. Soc, **82** (2010) 274-281.
- [2] H. G. Dales, *Banach algebras and automatic continuity*, Clarendon Press, Oxford, 2000.
- [3] H. G. Dales and A. T. Lau, *The second duals of Beurling algebras*, Mem. Amer. Math. **177** (2005).
- [4] M. Essmaili, M. Rostami, and A. R. Medghalchi, *Pseudo-contractibility and pseudo-amenability of semigroup algebras*, Arch. Math **97** (2011), 167-177.
- [5] M. Essmaili, M. Rostami and A. Pourabbas, *Pseudo-amenability of certain semigroup algebras*, Semigroup Forum (2011), 478-484.
- [6] B. E. Forrest and V. Runde, *Amenability and weak amenability of the Fourier algebra*, Math. Z. **250** (2005), 731-744.
- [7] F. Ghahramani and Y. Zhang, *Pseudo-amenable and pseudo-contractible Banach algebras*, Math. Proc. Camb. Phil. Soc. **142** (2007) 111-123.
- [8] A. Ya. Helemskii, *The homology of Banach and topological algebras*, Kluwer, Academic Press, Dordrecht, 1989.
- [9] E. Hewitt and K. Ross, *Abstract Harmonic Analysis I, Die Grundlehren der Mathematischen Wissenschaften*, **115**, Springer-Verlag, Berlin, (1963).
- [10] J. Howie, *Fundamental of Semigroup Theory*. London Math. Soc Monographs, vol. **12**. Clarendon Press, Oxford (1995).
- [11] Z. Hu M. Sangani Monfared and T. Traynor, *On character amenable Banach algebras*, Studia Math. **193** (2009) 53-78.
- [12] E. Kaniuth A. T. Lau and J. Pym, *On ϕ -amenability of Banach algebras*, Math. Proc. Camb. Soc. **44** (2008) 85-96.
- [13] W. D. Munn, *A class of irreducible matrix representations of an arbitrary inverse semigroup*, Proc. Glasgow Math. Assoc. **5** (1961), 41-48.
- [14] R. Nasr Isfahani and S. Soltani Renani, *Character contractibility of Banach algebras and homological properties of Banach modules*, Studia Math. **202** (2011) 205-225.
- [15] V. Runde, *Lectures on amenability*, Springer, New York, 2002.
- [16] A. Sahami and A. Pourabbas, *On ϕ -biflat and ϕ -biprojective Banach algebras*, Bull. Belg. Math. Soc. Simon Stevin, **20**(2013) 789-801.
- [17] E. Samei, N. Spronk and R. Stokke, *Biflatness and pseudo-amenability of Segal algebras*, Canad. J. Math. **62** (2010), 845-869.
- [18] M. Sangani Monfared, *Character amenability of Banach algebras*, Math. Proc. Camb. Phil. Soc. **144** (2008) 697-706.