
U.P.B. Sci. Bull., Series A, Vol. 75, Iss. 4, 2013                                                     ISSN 1223-7027 

DEVELOPMENT OF THE TAU METHOD FOR THE 
NUMERICAL STUDY OF A FOURTH-ORDER PARABOLIC 

PARTIAL DIFFERENTIAL EQUATION  

Babak SOLTANALIZADEH 1, Hadi Roohani GHEHSAREH2, Saeid 
ABBASBANDY 3 

In this paper, an approximate method based on matrix formulated 
algorithm is presented for numerical study of a fourth-order parabolic partial 
differential equation. For the numerical section, shifted Standard and shifted 
Chebyshev bases are utilized. Several numerical examples are presented to confirm 
the efficiency and accuracy of this procedure. 
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1. Introduction 

An operational technique for the numerical solution of nonlinear ordinary 
differential equations based on the Tau method [1] is presented by Ortiz and 
Samara [2]. Afterwards, many authors have been used this method and some other 
similar methods for solving various types of equations. In [3], this method  is used 
for linear ordinary differential eigenvalue problems and in [4] it is used for partial 
differential equations. This method has been developed for different types of 
integral and integro-differential equations [7, 8]. Authors of [9] used this method 
for the system of nonlinear Volterra integro-differential equations. Some matrix 
formulation techniques with arbitrary polynomial bases [5] and shifted Standard 
and shifted Chebyshev bases [6], have been proposed for the numerical solutions 
of the heat and wave equations with nonlocal boundary conditions. Similar works 
can be found in [10, 11, 12, 13, 14]. 

In this paper, we focus on the following parabolic equation  
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 with the following initial conditions  
,0 ),(=,0)( lxredxrxu ≤≤  (2) 
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,0 ),(=,0)( lxredxsxut ≤≤     (3) 
 and the boundary conditions  

,<0 ),(=)(0, Tttptu ≤     (4) 
  

,<0 ),(=)(1, Tttgtu ≤     (5) 
  

,<0 ),(=)(0, Tttktuxx ≤     (6) 
  

,<0 ),(=)(1, Tttqtuxx ≤     (7) 
 where u  is the transverse displacement of the beam, t  is time and x  is distance 
variable and ),( txf  is dynamic driving force per unit mass. the functions ),,( txf  

)( ),( ),( ),( ),( tktgtpxsxr  and )(tq  and the constants α  are known. 
Problem (1)-(7) is the problem of undamped transverse vibrations of a 

flexible straight beam in such a way that it’s supports do not contribute to the 
strain energy of the system. Recently, various authors focused on the development 
of numerical techniques for the solution of the Eq. (1) [15, 16, 17, 18, 19]. Aziz 
et. al [15] presented a three level method based on parametric quintic spline in 
space and finite difference discretization in time. In [16], a fifth-degree B-spline 
scheme is proposed for the numerical solution of the problem (1)-(7). Authors of 
[17, 18] proposed some finite difference schemes. Wazwaz [19], solved Eq. (1) by 
using the Adomian decomposition method. 

2. Formulation of the method. 

We assume that the functions ),,( txf  )( ),( ),( ),( ),( tktgtpxsxr  and )(tq  
generally are polynomials. otherwise, we can approximate these functions by one 
or two variate Taylor and Chebyshev series. Let 

T
n xxxx )](,),(),(),([= 210 υυυυυ …  is a polynomial basis vector given by VX=υ  

and T
m tttt )](,),(),(),([= 210 ωωωωω …  is a polynomial basis vector given by 

WT=ω , where V  and W  are nonsingular lower triangular matrices and 
TmTn xttTxxxX ],...,,[1,= ,],...,,[1,= 22 . So by using above polynomial basis 

vectors, we get  
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 Therefore, the approximate solution of the ),( txu  can be shown as  
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 where ],,...,,,[= 210 mUUUUU  with .],...,,,[= 210
T

njjjjj uuuuU  
Therefore, for finding the numerical approximation solution of ),( txu  we 

must find the matrix U . The matrix U  is an 1)(1)( +×+ mn  matrix which 
contains 1)(1)( +×+ mn  unknown coefficients. To find these 1)(1)( +×+ mn  
unknowns, we have to generate 1)(1)( +×+ mn  equations. 

 
Corollary 2.1. Let ,=),(, ωυ Gyxg T

mn  and ],...,,,[= 210 mGGGGG  with 
],,...,,,[= ,2,1,0, jnjjjj ggggG  then  
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 where D is the operational derivative matrix. 
Firstly, by applying Eqs. (8) and (9) in Eq. (2), we have  

,=(0) RU TT υωυ  
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 which implies  
,=(0) RUω       (11) 

 where T
m (0)],(0),(0),(0),[=(0) 210 ωωωωω … . 

And by applying Eqs. (8), (9) and (10) in Eq. (3), we have  
SUD T

t
T υωυ =(0)  

 hence  
,=(0) SUDtω   (12) 

 since υ  is a basis vector. 
Similarly, by using Eqs. (8), (9) and (10) in Eqs. (4)-(7), we have  

,=(0) ωωυ PUT  
  

,=(1) ωωυ GUT  
  

,=)(0)( 2 ωωυ KUDT
x

T  
  

,=)(1)( 2 ωωυ QUDT
x

T  
 which implies  

,=(0) PUTυ      (13) 
  

,=(1) GUTυ      (14) 
  

,=)(0)( 2 KUDT
x

Tυ      (15) 
  

,=)(1)( 2 QUDT
x

Tυ      (16) 
 where T

n
T (0)],(0),(0),[=(0) 10 υυυυ …  and T

n
T (1)],(1),(1),[=(1) 10 υυυυ … . 

Finally, by applying Eqs. (8), (9) and (10) in Eq. (1), we obtain  
,=)( 42 ωυωαυωυ FUDUD TT

x
T

t
T −  

 hence the residual ),( txRes  for above equation can be written as  
,=),( ωυ HtxRes T  

 where 
 

),)((= 42 FUDUDH T
xt −−α  

 since υ  and ω  are basic vectors. 
For finding a typical matrix formulation, similar to the typical Tau 

method, we eliminate two last columns and four last rows of the matrix H , then 
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we generate 1)(3)( −×− mn  linear algebraic equations by using the following 
algebraic equations:  

2.,0,1,2,=    4,,0,1,2,=    0,= −− mjniHij ……       (17) 
 Therefore, we can find 22 +n  linear algebraic equations from Eqs. (11) and (12), 

1)( −m  linear algebraic equations by choosing 1)( −m  equations from Eq.(13) 
and similarly, 1)( −m  equations from Eq. (14), 1)( −m  equations from Eq. (15), 

1)( −m  equations from Eq. (16) and finally, 1)(3)( −×− mn  equations from Eq. 
(17). Notice that in this paper, we eliminate two last elements of Eqs.(13)-(16). 
Now, a system of 1)(1)( +×+ mn  equations is generated.  

 

3. Application on Several Bases 

In this section, we introduce the shifted Standard and shifted Chebyshev 
bases and applied this bases for numerical computations of the method.  

3.1. Shifted Standard Bases 

In this section, we give some properties of shifted standard bases. Let, 
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 Now for computing 1)(1)( +×+ mn  unknown coefficients iju  in Eq.(18), with the 
matrix formulation method, we can obtain 1)(1)( +×+ mn  linear algebraic 
equation from Eqs. (11)-(17). In addition, the matrices xD  and tD  are the 
operational derivative matrices given by  

.

00000

000300
000020
000001
000000

=,

00000

000300
000020
000001
000000

=

1)1)((1)1)(( ++++
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

mm

t

nn

x

m

D

n

D

…
#######

…
…
…
…

…
#######

…
…
…
…

 

 



170            Babak Soltanalizadeh, Hadi Roohani Ghehsareh, Saeid Abbasbandy 

So, by using above matrices and Eqs.(11)-(17), the unknown coefficients 
iju  can be obtained. Then by Eq.(18), ),(, txu mn  can be calculated.  

3.2. Shifted Chebyshev Bases 

The matrix formulation method by using shifted Chebyshev bases is 
considered in this section. The shifted Chebyshev polynomials on the interval 

][0,s  are defined as  
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 In this case, the functions ),,( ),,(, txftxu mn  )( ),( ),( tpxsxr  and )(tq  are written 
as  
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 where the symbol )( ′′  over ∑  indicates that the first and last terms must be 

halved. Therefore, suppose that Tl
n

ll xTxTxT )](,),(),([= 10 …υ  and 
)](,),(),([= 10 tTtTtT T

m
TT …ω . Then the matrices xD  and tD  for odd n (or m ) are 

given as  
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and for even m (or n ) are given as  
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Also, ir , jp  and ijf  are computed by the following relations  
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 similarly, is  and jj gq  ,  and jk  can be computed.  

4. Numerical results 

In this section, we illustrate efficiency and accuracy of the presented 
method by the following numerical examples. We define some of the errors as 
follows:  
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 where ),(, txu mn  is the obtained approximation result for n  and m  and *u  is the 
exact solution of the problem.  
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Example 4.1 Consider the following fourth-order equation  
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  By using the SS base and choosing 5== mn , we obtain 
),)(1(1=),( 2532

5,5 ttxxxtxu −−−−+  which is the exact solution of the problem.  
Example 4.2 Consider the following fourth-order equation  
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 The exact solution of this problem is ).()(=),( texpxsintxu −π  
The maximum obtained errors and some other errors by the presented 

method for several values of m  and n , for SS and SC bases, are reported in Table 
1.. Furthermore the graphs of error functions for SS and SC bases are given in Fig 
1. and 2. respectively.  

 Table 1.  
The maximum errors ( ∞− |||| *

, uu mn ) from Example 4.2.  

   10== nm    20== nm    30== nm   
SS  9107.055 −×   22107.171 −×   39106.658 −×   
SC  10101.027 −×   26101.607 −×   42107.065 −×   

  
 Fig 1.: Plot of error function |),(),(| 30,30 txutxu − , with SS bases for Example 4.2. 
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 Fig 2.: Plot of error function |),(),(| 30,30 txutxu − , with SC bases for Example 4.2. 

 
Example 4.3 Consider the following fourth-order equation  

 
⎪
⎩

⎪
⎨

⎧

−−

−−

).(=)(1,  ),(=)(0,  ),(=)(1,
),(=)(0,  ),(=,0)(  ),(=,0)(

),()()2(1=

22

2

texptutexptutexptu
texptuxcosxuxcosxu

texpxcosuu

xxxx

t

xxxxtt

ππ
ππ

ππ

 
  The exact solution of this problem is ).()(=),( texpxcostxu π  

The obtained errors by the presented method for several values of m  and 
n , for SS and SC bases, are reported in Table 2. and the graphs of error functions 
for SS and SC bases are given in Fig 3. and 4. respectively.  

 Table 2.  
The maximum errors ( ∞− |||| *

, uu mn ) from Example 4.3.  

   10== nm    20== nm    30== nm   
SS  4105.409 −×   13103.271 −×   25109.279 −×   
SC  5101.489 −×    17104.455 −×   42101.783 −×   

 
  Fig 3.: Plot of error function |),(),(| 30,30 txutxu − , with SS bases for Example 4.3. 
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  Fig 4.: Plot of error function |),(),(| 30,30 txutxu − , with SC bases for Example 4.3. 

 Example 4.4 Consider the following fourth-order equation  
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  The exact solution of this problem is ).()(=),( tcosxsintxu π  
The computational results for the Example 4.4. are presented in Table 3. In 

addition, the plots of corresponding error functions are shown in Fig 5. and Fig 6.  
Table 3.  

The maximum errors ( ∞− |||| *
, uu mn ) from Example 4.4.  

   10== nm    20== nm    30== nm   
SS  4102.213 −×   15109.493 −×   27109.888 −×   
SC  7101.152 −×   21104.611 −×   36102.287 −×   

  
 Fig. 3: Plot of error function |),(),(| 30,30 txutxu − , with SS bases for Example 4.4. 
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 Fig. 4: Plot of error function |),(),(| 30,30 txutxu − , with SC bases for Example 4.4. 

 

6. Conclusions 

In this research, A high accuracy numerical scheme is proposed for the 
numerical studying of a forth order parabolic partial differential equation with 
some initial and boundary conditions. The most important section of our method 
is converting the model of PDE to a linear system of algebraic equations. The 
method is based on finding a solution in the form of a polynomial in two 
variables. In addition, by increasing the number of terms in the series we can 
decrease the error of this process. Finally, the effectively of our method can be 
shown by the numerical test problems. 
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