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NONLINEAR DYNAMICS ANALYSIS OF A TWO-DEGREE-

OF-FREEDOM DRY FRICTION VIBRO-IMPACT SYSTEM 

WITH SYMMETRIC CLEARANCES 

Xingxiao CAO 1, Quanfu GAO2 

The clearances and frictions among mechanical components exist widely in 

mechanical systems due to the demand for mechanical design and assembly errors. 

Clearances and frictions can cause vibration and noise, which have a great 

influence on performance of mechanical equipment. Studying the influence of 

clearances and frictions on system dynamics can optimize the mechanical system. A 

dynamic model of two-degree-of-freedom dry friction vibro-impact with symmetric 

clearances is established. The complicated dynamic behaviors are investigated by 

Runge-Kutta numerical method. The numerical simulation results indicate that the 

system exists complete 1-p-p fundamental periodic motions sequence. The chattering 

motion occurs when the impact number p is large enough. With decrease in 

frequency  , the region of fundamental periodic motions becomes smaller, that of 

chaos becomes wider. The route of the fundamental periodic motion to chaos is 

similar, symmetric period motion transits into asymmetric period motion via 

pitchfork bifurcation, and finally falls into chaos via period-doubling bifurcation 

sequence. The mutual transition process between the fundamental periodic motions 

is complex and rich periodic motions overlapped each other, which is irreversible in 

some frequency range, thus a series of hysteresis zones occur, in which two types of 

periodic motions coexist.  
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1. Introduction 

In order to meet the needs of mechanical assembly, heat-expansion and 

cold-contraction, motion limiting constraints, the clearances or gaps exist in a 

wide variety of engineering applications between the primary components. Due to 

the clearance, the primary components will occur repeated impact and friction 

under external exciting force, as well as abrasion, noise and impact arise, which 

result in the accuracy and efficiency of the equipment decrease. Some severe 

cases may cause equipment damage and reduce service life. So the dynamics of 

the vibro-impact system with multi-degree-of-freedom and multi-clearance should 
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be studied further, and it is very significant to the dynamics optimal design, 

reliability and noise controlling of mechanical system. 

The scholars at home and abroad have done a lot of researches on vibro-

impact and friction vibration system with clearances and constraints by qualitative 

analyses, numerical simulation and experiment. These studies involved dynamic 

stability [1-6], bifurcation [7-11], friction collision singularity [12-18], and 

chattering-impact vibration with sticking [19-23]. Nordmar [24] studied the 

singularity of Poincaré map caused by impact oscillator period orbits grazing rigid 

limit, found that with varying the control parameter, a special type of bifurcation, 

“grazing bifurcation” occurs in an impact oscillator and it was different from the 

conventional bifurcation of the continuous dynamical system, which laid a 

theoretical foundation for subsequent study of grazing bifurcation and singularity 

in this field. A two-degree-of freedom vibro-impact system with a rigid stop under 

periodic excitation was taken as the analysis object, diversity and evolution of 

periodic impact motions were analyzed in detail, and the correlative relationship 

and matching law between dynamic performance and key parameters are 

emphatically analyzed in Refs [25-26]. Budd and Dux [27] studied chattering 

impact motion and the role of chatter on vibro-impact dynamics. Wagg [28] 

numerically presented complete chattering and periodic sticking phenomena in a 

vibration system with two motion-limiting constraints and analyzed multi-sliding 

bifurcations of the system. Zhu and Luo [29] analyzed the dynamics characteristic 

of a two-degree-of freedom elastic vibro-impact system based on two-parameter 

and revealed the evolution law of the chattering-impact motion of the system. 

Virgin and Begley [30] studied global dynamics of the vibration impact system 

with Coulomb friction based on cell mapping method. They presented fully 

solution sets by studying the domain of attraction and found that bifurcation 

characteristic depended on the interactions of periodic attractor and domain of 

attraction, the grazing bifurcation caused catastrophic behaviors. Peterka [31] 

analyzed the influence of the dry friction on dynamic performances of the 

vibration impact system, and experimental study were carried. In view of the 

impact oscillator with dry friction, Cone and Zadoks [32] studied the pitchfork 

bifurcation, grazing bifurcation and stick-slip impact vibration, the existence of a 

subharmonic resonance motion that encompassed three periods of the forcing 

during each period was found. Ding et al. [33] studied the nonlinear dynamics of 

dry friction oscillator with symmetric clearance and found that pitchfork 

bifurcation existed in the system, the system became from symmetrical periodic 

motion to asymmetrical periodic motion, and then underwent Hopf bifurcation, 

period-doubling bifurcation and so forth to chaos. 

There are many factors, such as impact, friction and time-varying stiffness, 

which cause the non-smooth or piece-wise smooth motion of the vibro-impact 

system for the practical mechanical system. The more the non-smooth factors are 
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considered, the more real the established dynamic model is. The previous research 

about the dynamic research on the non-smooth mechanical systems focused on 

single non-smooth factor, such as vibro-impact system, or vibration system with 

friction. Based on the related researches, this paper established a dry-

friction/impact coupling dynamic model of the mechanical system and the effect 

of the dry friction on the dynamics of the vibro-impact system were investigated. 

The fundamental periodic motions sequence and route to chaos were studied, the 

transition irreversibility of adjacent impact motions with fundamental period and 

hysteresis were found. The formation of incomplete chattering motion of the 

system in low frequency was studied． 

2. Mechanical model 

The mechanical model of a two-degree-of-freedom dry friction oscillators 

with symmetric clearances is shown schematically in Fig. 1. The mass M1 is 

connected to M2 by a linear spring with stiffness K1 and a viscous damper with 

damping constants C1, and mass M2 is connected to rigid wall by a linear spring 

with stiffness K2 and a viscous damper with damping constants C2. There is 

Coulomb friction between the two masses. There is an harmonic excitation 

force sin( )iP t  +  (i=1, 2) acting on the mass Mi. The static equilibrium position 

of the system is taken as the origin, and displacements of the masses M1 and M2 

are expressed by X1 and X2, respectively. There are symmetric clearances B 

between masses M1 and M2. The mass M1 impacts rigidly with the mass M2 when 

the relative displacement 1 2X X B− = . 

 

 
Fig. 1. The schematic of a two-degree-of-freedom vibro-impact system with symmetric clearances 

In general, in order to study the dynamics of the vibro-impact system, 

some non-dimensional parameters should be introduced, and the values of system 

parameters can be determined easily if the dimensionless number is selected 

reasonably, which is important to study the parameter optimization and matching 
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law of the system. In the following work, we assume all parameters and variables 

are dimensionless, which are given by 
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Equation (1) allows us to make a conclusion that the sampling range of 

partial dimensionless parameters can be easily identified as 20 [0,1]f  , where kf  

denotes the sliding friction force between masses M1 and M2. 

Between the adjacent impacts, the system exist two states: slipping state 

and sticking state, due to the existing of friction F. 

when, 1 2x x −  , 1 2 0x x− 
 
the two masses are in slipping state, the 

non-dimensional equation is 
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Between the adjacent impacts, when 1 2 0x x− = , the system may evolve 

into sticking state, when  

               1 2x x= ， 1 2x x=                                                        (4) 

thus the friction can be derived from equation (2) and  (4)  as follow  

                    2 2
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When 1 2 0x x− =
 
and 0 sf f , the system evolves into sticking state, 

otherwise the mass M1 continue sliding, just the direction of friction becomes 

opposite, where sf  is the maximum static friction of the system.  

Under the sticking state, two masses stick together for synchronous motion 

and the system becomes forced vibration of single-degree-of-freedom oscillator 

with the mass (M1+M2), the non-dimensional equation becomes as follow: 
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During the sticking state, when 0 sf f , the sticking state ends, the 

system evolves into sliding state again. And based on the 0f , the sliding state 

exist in two states, namely 1 2 0x x− 
 
and 1 2 0x x−  , if 0 0f  , then the system 

evolves into sliding state of the 1 2 0x x−  , otherwise, when 0 0f 
 
the system 

evolves into sliding state of the 1 2 0x x−  .
 

Under the action of the friction, when the system is in sticking state, the 

impacts do not occur. During the sliding state, the impacts occur when 

1 2x x b− = , the impact equation becomes 
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where, 1x − and 2x − denote the velocities of the mass M1 and M2 

immediately before impact respectively, 1x +  
and 2x +  denote the velocities of the 

mass M1 and M2 immediately after impact respectively. 

The system illustrated in Fig. 1 may present multiple types of periodic 

motions under proper system parameters condition. In order to study the periodic 

motions visually, the symbol n-p-q is introduced, where n (n=1，2，3, …) 

represents the cycle number of the excitations in an oscillation cycle, p and q (p, q 

=0, 1, 2, 3, …) refer to the number of impacts of mass M1 occurring on the left 

and right sides of the stop respectively, when n=1, p=q (p ≥ 1), which is called 

fundamental periodic motion particularly. 

The system exhibits three motion states: sliding state, sticking state and 

impact state. Between the adjacent impacts, sliding state or sticking state occurs, 

sliding motion means two masses do not move in step, the sticking motion means 

the two mass move in step without impact. Under the sliding state, impact motion 

occurs once the  1 2x x − =
 
, In general, the system may exhibit sliding state 

with the smaller friction coefficient and the sticking state will occur in the band of 

low frequencies with higher friction coefficient.  

In order to identify which type of motion the system enters, we need to 

compute its time history by means of numerical computation. In general, the 

system for the sliding motion and the sticking motion, a fourth-order Runge-Kutta 

varying-step algorithm is used to solve the Eq. (2) and Eq. (6) with sufficient 

precision. However, it is difficulty to confirm the point of transition from one 

patter of motion to another. The accuracy of the conversion time is crucial to the 

accuracy of the results. Fixed-step h0=0.01 is set initially in order to ensure that 
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all patterns of motions are contained, after every time step, the judgment of the 

motion pattern is made, once the motion pattern changes, the iteration will go 

back to the previous iterative point, and time step is decreased by one-tenth 

consecutively until the value of the transition time is precise to the order of 10-10. 

The similar approach can be carried out for the value of the impact time. The 

numerical simulation program is written in C language in this paper. 

Although the time history of the system can be determined with the above 

computational technique under any initial conditions, it hardly reveal any 

qualitative features of the system dynamics, which is conveniently studied by use 

of an impact Poincaré map derived from the equations of motion, supplemented 

by transition condition at the instant of impact. Here each iteration of this map 

corresponds to the point mass M1 colliding with mass M2 once at the constraint. 

The state of the vibro-impact system, just immediately after impact occurs at the 

constraint, is chosen as Poincaré section, i.e.,  
4
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3. Fundamental motions and route to chaos 

The system with the non-dimensional parameters (1) 10m = , 5k = , 

c 5 = , 0.1 = , b = 0.03, 20f =0, 1.5s kf f= , R =0.8 and t =  are chosen as the 

standard parameter for analyses, the   is taken as the control parameter. 

The bifurcation diagrams for the system are shown in Fig. 2. Figs. 2(a)-(c) 

are the global bifurcation diagrams bifurcation diagrams for different frictions in 

the forcing frequency interval  [1.0, 8.0]. For kf =0.01, 0.05 and 0.1, the 

frequency of pitch-fork bifurcation are 6.844, 6.81 and 6.745, which shows with 

the friction increases, the bifurcation frequency decrease in high frequency 

domain, but not very much. The region of the periodic motions becomes wider 

and that of chaos’ becomes narrower in mid and low frequency domain, it is more 

obvious for low frequency, the system exhibits more periodic motions for the 

large kf , which means the frictions have a greater impact on dynamics 

characteristics of the system in low frequency domain. 

Figs. 2(d)-(f) are the local enlargement of the Fig. 2a. The simulative 

results show that with the decrease in  , the system exists fundamental 

periodic motions sequence 1-1-1→1-2-2→1-3-3→…→1-p-p. No sticking motion 

occurs due to the small friction, so the sticking and non-sticking motion are not 

marked.  
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With decrease in  , the region of fundamental periodic motions becomes 

smaller, and the range of chaos becomes wider, the impact number p increases 

continuously and the impact velocity decreases continuously. 
 

 

    

   
 

Fig. 2. The bifurcation diagram of (a) kf =0.01; (b)
 kf =0.05; (c)

 kf =0.1 

(d)- (f) Local enlargements of (a): (d)
 

[4.2,7.2] ; (e)
 

[2.9,3.4] ; (f) [2.1,2.3] . 
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When the impact number p becomes large enough, the system occurs 

chattering motion. Chattering motion assumes different forms: incomplete and 

complete chattering, described by 1- -p p and1- -p p , respectively. The similarities of 

the two forms are that impact number p is sufficiently large during one forcing 

period (n =1), but for the former, the impact number p is finite, impact velocity do 

not reduce to zero and the two masses don’t stick together at the rigid constraint. 

For the latter, the impact number p is infinite, impact velocity of the chattering 

sequence ultimately reduces to zero, which causes sticking motion of masses M1 

and M2 at the rigid constraint. 

 

 

 

Fig. 3. Phase plane portraits of the fundamental periodic motion, kf =0.01 

(a) 1-1-1S motion;  =7.5; (b) 1-1-1AS motion;  =6.5; (c) 1-2-2S motion,  =3.4; 

(d) 1-3-3S motion;  =2.3; (e) 1-4-4S   motion;  =1.8; (f) 1-5-5S motion,  =1.5. 

The phase portraits of fundamental periodic motions sequence are shown 

in Fig. 3. The simulated results of the incomplete chattering motion are shown in 

Fig. 4 in the form of phase portraits, response diagram and projected Poincaré 

sections. There are two bifurcations, pitchfork bifurcation and period doubling 

bifurcation during the fundamental periodic motions 1-1-1 transits into chaos. The 

system exhibits single symmetric 1-1-1 fundamental periodic motion 

when 6.844  . When   passes through 6.844 = decreasingly, pitchfork 

bifurcation occurs and symmetric 1-1-1S fundamental periodic motion transits into 

asymmetric 1-1-1AS fundamental periodic motion. The phase portraits of the 

symmetric and asymmetric 1-1-1 fundamental periodic motion are shown as Fig. 

3a and Fig. 3b respectively. The asymmetric orbits, caused by different initial 
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conditions, is represented by dotted lines in Fig 3(b). With further decrease in the 

forcing frequency  , finally the asymmetric 1-1-1AS periodic motion transits into 

chaos via Feigenbaum period-doubling bifurcation sequence. The routes of the 

other fundamental periodic motion to chaos are similar to the 1-1-1 fundamental 

periodic motion. 

            

                      
 

Fig. 4. Incomplete chattering 1-18-18 motion ( =0.97): (a) The phase plane portraits; (b) The 

time trajectories; (c) The Poincaré sections (
1 2x x b− = ). 

4. Mutual transition of the adjacent fundamental motions 

Though the transition law of the fundamental periodic motion to chaos is 

similar, but chaos and complex periodic motions overlapped each other during the 

transition of the fundamental periodic motion. The mutual transition process is 

irreversible and complex phenomenon is more notable in the high frequency 

range. In order to investigate the transition law of the fundamental periodic 

motion, the transition zone between motion 1-1-1 and 1-2-2 is enlarged locally as 

Fig. 5. With decrease in  , during the transition from fundamental periodic 1-1-1 

motion to 1-2-2 motion, at first, 2-2-2 and 4-4-4 periodic motion via period 

doubling bifurcation occurs, and then the system falls into chaos via period 

doubling bifurcation sequences. With decrease in   further, after a narrow 

window of chaos, 2-4-2 motion (maybe 2-2-4 motion occurs due to different 

initial conditions) is separated from the chaos via grazing bifurcation, as   is 

decreased progressively, 2-4-2 motion undergoes a succession of period doubling 

bifurcation, which eventually results in chaotic motions, and the region of chaotic 

motion becomes wider than that of high forcing frequency. With decrease in   

further, 1-1-2 motion (maybe 1-2-1 motion occurs due to different initial 

conditions)  is separated from the chaos, the system settles into chaotic motion 

again with   decrease, finally, 1-2-2 symmetrical motion is generated after a 

wider region of chaos. 
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Fig. 5. The global bifurcation of x − , kf =0.01 

In order to find mutual transition law of the adjacent fundamental periodic 

motions sequence, numerical analysis is carried out with the same system 

parameters and the same range of control parameter  , the difference is that the 

control parameter   changes from low to high as shown in Fig. 5. The transition 

law is similar in the forcing frequency interval [3.5, 4.8] , but it is markedly 

different  in the forcing frequency interval [4.8, 5.942]  compared with that   

decrease. When the   decreases in the region, the bifurcations are period 

doubling bifurcations, but when the   increases in the same region, at first, 3-3-6 

motion is separated from the chaos via reverse period doubling bifurcation, and 

then 2-2-4 motion occurs via Saddle-node bifurcation, we can observe that the 

value of   increase of the bifurcation occurs is different when the   varies in 

different direction as shown in Fig. 5.  

As shown in Fig. 5, there three hysteresis intervals in the transition zone 

between motion 1-1-1 and 1-2-2, two types of periodic motions are stable and can 

coexist depending on the initial conditions of the system in the hysteresis 

intervals, we name it hysteresis zone, denoted with HR. The bifurcation boundary 

of HR is marked with dotted lines. Here, SNn p q− − , PDn p q− −  and  PDr
n p q− − denote the 

curves of Saddle-node, period doubling bifurcation and reverse period doubling 

bifurcation of n-p-q motion, respectively. The first hysteresis zone HR1 is formed 
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by two curves 1 1 2SN − −   ( =5.942) and 1 1 1PD − −  
( =5.79), in which the 1-1-2 

motion and 1-1-1AS motion coexist, the phase portrait of this periodic motion is 

shown in Fig. 6(a) and 6(d). The second hysteresis zone HR2 is formed by two 

curves 1 1 1PD − −   ( =5.79) and 2 2 4PDr
− −  

( =5.575), in which 1-1-2 motion and 2-2-

2AS motion coexist, the phase portrait of this periodic motion is shown in Fig. 6(b) 

and 6(e), the third hysteresis zone HR3 is formed by two curves 3 3 6SN − −  
(  =5.015) and 2 4 2PD − −  

(  =4.962), where 2-4-2 motion and 3-3-6 motion 

coexist, the phase portrait of this periodic motion is shown in Fig. 6(c) and 6(f). 
 

 

 
                                                

Fig. 6. Phase plane portraits of the hysteresis zone: 

(a)  =5.85, 1-1-1AS motion; (b)  =5.67, 2-2-2AS motion; (c)  =5.01, 2-4-2 motion; 

(d)  =5.85, 1-1-2 motion;    (e)  =5.67, 1-1-2 motion;     (f)  =5.01, 3-3-6 motion. 

5. Conclusions 

Dynamics analysis of a two-degree-of-freedom dry friction vibro-impact 

system with symmetric clearances are studied. The judgment method of the 

sticking motion and sliding motion of the system are given. Complicated 

dynamics analysis are carried out by numerical simulation. Numerical simulation 

results indicate that the system exist complete 1-p-p fundamental periodic motions 

sequence. With decrease in  , the region of fundamental periodic motions 

becomes smaller, and the region of chaos becomes wider. The impact number p 

increases continuously and the impact velocity decreases continuously with 
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decrease in  , when the impact number p becomes large enough, the system 

occurs chattering motion.  

The route of the fundamental periodic motion to chaos is similar, i. e., with 

decrease in  , symmetric 1-1-1 fundamental periodic motion transits into 

asymmetric 1-1-1AS fundamental periodic motion via pitchfork bifurcation, and 

finally falls into chaos via period-doubling bifurcation sequence. 

The mutual transition process between the adjacent fundamental 1-p-p 

periodic motions is complex and rich periodic motions overlapped each other 

when the   in high frequency, which is irreversible in some frequency range. 

Reverse period doubling bifurcation and Saddle-node bifurcation occur when   

sweeps in increasing direction, but period doubling bifurcation occurs when   

sweeps in decreasing direction. Due to the value of the bifurcation parameter is 

different, thus a series of hysteresis zone occurs in which two types of periodic 

motions coexist. 
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