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NONLINEAR DYNAMICS ANALYSIS OF A TWO-DEGREE-
OF-FREEDOM DRY FRICTION VIBRO-IMPACT SYSTEM
WITH SYMMETRIC CLEARANCES

Xingxiao CAO !, Quanfu GAO?

The clearances and frictions among mechanical components exist widely in
mechanical systems due to the demand for mechanical design and assembly errors.
Clearances and frictions can cause vibration and noise, which have a great
influence on performance of mechanical equipment. Studying the influence of
clearances and frictions on system dynamics can optimize the mechanical system. A
dynamic model of two-degree-of-freedom dry friction vibro-impact with symmetric
clearances is established. The complicated dynamic behaviors are investigated by
Runge-Kutta numerical method. The numerical simulation results indicate that the
system exists complete 1-p-p fundamental periodic motions sequence. The chattering
motion occurs when the impact number p is large enough. With decrease in
frequency @, the region of fundamental periodic motions becomes smaller, that of
chaos becomes wider. The route of the fundamental periodic motion to chaos is
similar, symmetric period motion transits into asymmetric period motion via
pitchfork bifurcation, and finally falls into chaos via period-doubling bifurcation
sequence. The mutual transition process between the fundamental periodic motions
is complex and rich periodic motions overlapped each other, which is irreversible in
some frequency range, thus a series of hysteresis zones occur, in which two types of
periodic motions coexist.
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1. Introduction

In order to meet the needs of mechanical assembly, heat-expansion and
cold-contraction, motion limiting constraints, the clearances or gaps exist in a
wide variety of engineering applications between the primary components. Due to
the clearance, the primary components will occur repeated impact and friction
under external exciting force, as well as abrasion, noise and impact arise, which
result in the accuracy and efficiency of the equipment decrease. Some severe
cases may cause equipment damage and reduce service life. So the dynamics of
the vibro-impact system with multi-degree-of-freedom and multi-clearance should
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be studied further, and it is very significant to the dynamics optimal design,
reliability and noise controlling of mechanical system.

The scholars at home and abroad have done a lot of researches on vibro-
impact and friction vibration system with clearances and constraints by qualitative
analyses, numerical simulation and experiment. These studies involved dynamic
stability [1-6], bifurcation [7-11], friction collision singularity [12-18], and
chattering-impact vibration with sticking [19-23]. Nordmar [24] studied the
singularity of Poincaré map caused by impact oscillator period orbits grazing rigid
limit, found that with varying the control parameter, a special type of bifurcation,
“grazing bifurcation” occurs in an impact oscillator and it was different from the
conventional bifurcation of the continuous dynamical system, which laid a
theoretical foundation for subsequent study of grazing bifurcation and singularity
in this field. A two-degree-of freedom vibro-impact system with a rigid stop under
periodic excitation was taken as the analysis object, diversity and evolution of
periodic impact motions were analyzed in detail, and the correlative relationship
and matching law between dynamic performance and key parameters are
emphatically analyzed in Refs [25-26]. Budd and Dux [27] studied chattering
impact motion and the role of chatter on vibro-impact dynamics. Wagg [28]
numerically presented complete chattering and periodic sticking phenomena in a
vibration system with two motion-limiting constraints and analyzed multi-sliding
bifurcations of the system. Zhu and Luo [29] analyzed the dynamics characteristic
of a two-degree-of freedom elastic vibro-impact system based on two-parameter
and revealed the evolution law of the chattering-impact motion of the system.
Virgin and Begley [30] studied global dynamics of the vibration impact system
with Coulomb friction based on cell mapping method. They presented fully
solution sets by studying the domain of attraction and found that bifurcation
characteristic depended on the interactions of periodic attractor and domain of
attraction, the grazing bifurcation caused catastrophic behaviors. Peterka [31]
analyzed the influence of the dry friction on dynamic performances of the
vibration impact system, and experimental study were carried. In view of the
impact oscillator with dry friction, Cone and Zadoks [32] studied the pitchfork
bifurcation, grazing bifurcation and stick-slip impact vibration, the existence of a
subharmonic resonance motion that encompassed three periods of the forcing
during each period was found. Ding et al. [33] studied the nonlinear dynamics of
dry friction oscillator with symmetric clearance and found that pitchfork
bifurcation existed in the system, the system became from symmetrical periodic
motion to asymmetrical periodic motion, and then underwent Hopf bifurcation,
period-doubling bifurcation and so forth to chaos.

There are many factors, such as impact, friction and time-varying stiffness,
which cause the non-smooth or piece-wise smooth motion of the vibro-impact
system for the practical mechanical system. The more the non-smooth factors are
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considered, the more real the established dynamic model is. The previous research
about the dynamic research on the non-smooth mechanical systems focused on
single non-smooth factor, such as vibro-impact system, or vibration system with
friction. Based on the related researches, this paper established a dry-
friction/impact coupling dynamic model of the mechanical system and the effect
of the dry friction on the dynamics of the vibro-impact system were investigated.
The fundamental periodic motions sequence and route to chaos were studied, the
transition irreversibility of adjacent impact motions with fundamental period and
hysteresis were found. The formation of incomplete chattering motion of the
system in low frequency was studied.

2. Mechanical model

The mechanical model of a two-degree-of-freedom dry friction oscillators
with symmetric clearances is shown schematically in Fig. 1. The mass My is
connected to M2 by a linear spring with stiffness Ki and a viscous damper with
damping constants C1, and mass M2 is connected to rigid wall by a linear spring
with stiffness K, and a viscous damper with damping constants C,. There is
Coulomb friction between the two masses. There is an harmonic excitation
force P sin(Qt +7) (i=1, 2) acting on the mass M. The static equilibrium position

of the system is taken as the origin, and displacements of the masses M1 and M>
are expressed by X: and X, respectively. There are symmetric clearances B
between masses M1 and M2. The mass My impacts rigidly with the mass Mz when

the relative displacement|X, — X,|=B.
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Fig. 1. The schematic of a two-degree-of-freedom vibro-impact system with symmetric clearances

In general, in order to study the dynamics of the vibro-impact system,
some non-dimensional parameters should be introduced, and the values of system
parameters can be determined easily if the dimensionless number is selected
reasonably, which is important to study the parameter optimization and matching



6 Xingxiao Cao, Quanfu Gao

law of the system. In the following work, we assume all parameters and variables
are dimensionless, which are given by

ﬂmz_z'ﬂkzﬁ'/uc:&’fmz i o= - 0= &'t:T ﬁ
M, Ky C R+F R+R Ky M,
(1)

pe—S po B X i1y
2/kM, "~ R+R T R+
Equation (1) allows us to make a conclusion that the sampling range of
partial dimensionless parameters can be easily identified as f,, €[0,1], where f,
denotes the sliding friction force between masses My and Mo.

Between the adjacent impacts, the system exist two states: slipping state
and sticking state, due to the existing of friction F.

when, |X, —X,| <& ,|% —X,| # 0 the two masses are in slipping state, the
non-dimensional equation is

1 0](%) [2¢ -2¢ A
0 w15 220 2carm))1x) It 1em ] |x

<

1- fzo : _fk . .
:{f }Sln(a)t+r)+{f }sgn(xl—xz)(|x1—x2|<b) (2)
1 (y>0)
where sgn(y)=40 (y=0) (3)
-1 (y<0)

Between the adjacent impacts, when |>'<1—>’<2| =0, the system may evolve
into sticking state, when

=%, %=X 4)
thus the friction can be derived from equation (2) and (4) as follow
- Mo Sin(at +7) + 261 X, + 14X, (X,-X,) (5)
1+ p,

When [%, —%,[=0 and |f,|<f , the system evolves into sticking state,
otherwise the mass M1 continue sliding, just the direction of friction becomes
opposite, where f, is the maximum static friction of the system.

Under the sticking state, two masses stick together for synchronous motion
and the system becomes forced vibration of single-degree-of-freedom oscillator
with the mass (M1+M>), the non-dimensional equation becomes as follow:
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{Xizxz’)qzxz (6)

(L4 p, )X, + 280 %, + 14, X, =sin(wt +7)

During the sticking state, when |fj|> f,, the sticking state ends, the
system evolves into sliding state again. And based on the f;, the sliding state
exist in two states, namely X —X, >0 and X —X, <0, if f, >0, then the system
evolves into sliding state of the X, —X, >0, otherwise, when f, <0 the system

evolves into sliding state of the X —X, <0.

Under the action of the friction, when the system is in sticking state, the
impacts do not occur. During the sliding state, the impacts occur when

|, —X,| =b, the impact equation becomes
{Xl +/lex2— = X1+ +:leX2+
X1+ - X2+ = _R(Xl— - XZ—)
where, X_ and X, denote the velocities of the mass M: and M

(7)

immediately before impact respectively, X, and X,, denote the velocities of the

mass M1 and M2 immediately after impact respectively.

The system illustrated in Fig. 1 may present multiple types of periodic
motions under proper system parameters condition. In order to study the periodic
motions visually, the symbol n-p-q is introduced, where n (n=1, 2, 3, ...)
represents the cycle number of the excitations in an oscillation cycle, p and g (p, q
=0, 1, 2, 3, ...) refer to the number of impacts of mass M1 occurring on the left
and right sides of the stop respectively, when n=1, p=q (p > 1), which is called
fundamental periodic motion particularly.

The system exhibits three motion states: sliding state, sticking state and
impact state. Between the adjacent impacts, sliding state or sticking state occurs,
sliding motion means two masses do not move in step, the sticking motion means
the two mass move in step without impact. Under the sliding state, impact motion

occurs once the |x —X,|=4 , In general, the system may exhibit sliding state

with the smaller friction coefficient and the sticking state will occur in the band of
low frequencies with higher friction coefficient.

In order to identify which type of motion the system enters, we need to
compute its time history by means of numerical computation. In general, the
system for the sliding motion and the sticking motion, a fourth-order Runge-Kutta
varying-step algorithm is used to solve the Eq. (2) and Eq. (6) with sufficient
precision. However, it is difficulty to confirm the point of transition from one
patter of motion to another. The accuracy of the conversion time is crucial to the
accuracy of the results. Fixed-step h0=0.01 is set initially in order to ensure that
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all patterns of motions are contained, after every time step, the judgment of the
motion pattern is made, once the motion pattern changes, the iteration will go
back to the previous iterative point, and time step is decreased by one-tenth
consecutively until the value of the transition time is precise to the order of 107,
The similar approach can be carried out for the value of the impact time. The
numerical simulation program is written in C language in this paper.

Although the time history of the system can be determined with the above
computational technique under any initial conditions, it hardly reveal any
qualitative features of the system dynamics, which is conveniently studied by use
of an impact Poincaré map derived from the equations of motion, supplemented
by transition condition at the instant of impact. Here each iteration of this map
corresponds to the point mass Mz colliding with mass M2 once at the constraint.
The state of the vibro-impact system, just immediately after impact occurs at the
constraint, is chosen as Poincaré section, i.e.,

Oy ={(%, %, %, %,,0) € R4XS'X1_X2 =b, %%, >0}

8
oy ={(X, %, %, %,,0) € R* xS, X — X, ==, %%, <O} ®

3. Fundamental motions and route to chaos

The system with the non-dimensional parameters (1) x, =10, g =5,
4.=5, =01, b=0.03, f,,=0, f,=15f , R=0.8and &=t are chosen as the

standard parameter for analyses, the @ is taken as the control parameter.

The bifurcation diagrams for the system are shown in Fig. 2. Figs. 2(a)-(c)
are the global bifurcation diagrams bifurcation diagrams for different frictions in
the forcing frequency interval we[1.0, 8.0]. For f, =0.01, 0.05 and 0.1, the

frequency of pitch-fork bifurcation are 6.844, 6.81 and 6.745, which shows with
the friction increases, the bifurcation frequency decrease in high frequency
domain, but not very much. The region of the periodic motions becomes wider
and that of chaos’ becomes narrower in mid and low frequency domain, it is more
obvious for low frequency, the system exhibits more periodic motions for the

large f, , which means the frictions have a greater impact on dynamics

characteristics of the system in low frequency domain.

Figs. 2(d)-(f) are the local enlargement of the Fig. 2a. The simulative
results show that with the decrease in @ , the system exists fundamental
periodic motions sequence 1-1-1—1-2-2—1-3-3—...—1-p-p. No sticking motion
occurs due to the small friction, so the sticking and non-sticking motion are not
marked.



Nonlinear dynamics analysis of a two-degree-of-freedom [...] with symmetric clearances 9

With decrease in w, the region of fundamental periodic motions becomes
smaller, and the range of chaos becomes wider, the impact number p increases
continuously and the impact velocity decreases continuously.
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Fig. 2. The bifurcation diagram of (a) f,=0.01; (b) f, =0.05; (c) f, =0.1
(d)- (f) Local enlargements of (a): (d) @<[4.2,7.2] ; (e) w€[2.9,3.4]; (f) @ e[2.1,2.3].



10 Xingxiao Cao, Quanfu Gao

When the impact number p becomes large enough, the system occurs
chattering motion. Chattering motion assumes different forms: incomplete and
complete chattering, described by 1-p-p and1-p-p, respectively. The similarities of
the two forms are that impact number p is sufficiently large during one forcing
period (n =1), but for the former, the impact number p is finite, impact velocity do
not reduce to zero and the two masses don’t stick together at the rigid constraint.
For the latter, the impact number p is infinite, impact velocity of the chattering
sequence ultimately reduces to zero, which causes sticking motion of masses M1
and M at the rigid constraint.
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Fig. 3. Phase plane portraits of the fundamental periodic motion, fk =0.01

(@) 1-1-1s motion; w =7.5; (b) 1-1-1as motion; @ =6.5; (c) 1-2-2s motion, w =3.4;

(d) 1-3-3s motion; @ =2.3; (e) 1-4-4s motion; @ =1.8; (f) 1-5-5s motion, @ =1.5.
The phase portraits of fundamental periodic motions sequence are shown
in Fig. 3. The simulated results of the incomplete chattering motion are shown in
Fig. 4 in the form of phase portraits, response diagram and projected Poincaré
sections. There are two bifurcations, pitchfork bifurcation and period doubling
bifurcation during the fundamental periodic motions 1-1-1 transits into chaos. The
system exhibits single symmetric 1-1-1 fundamental periodic motion
when @ >6.844 . When o passes through @ =6.844 decreasingly, pitchfork
bifurcation occurs and symmetric 1-1-1s fundamental periodic motion transits into
asymmetric 1-1-1as fundamental periodic motion. The phase portraits of the
symmetric and asymmetric 1-1-1 fundamental periodic motion are shown as Fig.
3a and Fig. 3b respectively. The asymmetric orbits, caused by different initial
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conditions, is represented by dotted lines in Fig 3(b). With further decrease in the
forcing frequency w, finally the asymmetric 1-1-1as periodic motion transits into
chaos via Feigenbaum period-doubling bifurcation sequence. The routes of the
other fundamental periodic motion to chaos are similar to the 1-1-1 fundamental
periodic motion.
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Fig. 4. Incomplete chattering 1-18-18 motion (@ =0.97): (a) The phase plane portraits; (b) The
time trajectories; (c) The Poincaré sections (x, —X, =|b|).

4. Mutual transition of the adjacent fundamental motions

Though the transition law of the fundamental periodic motion to chaos is
similar, but chaos and complex periodic motions overlapped each other during the
transition of the fundamental periodic motion. The mutual transition process is
irreversible and complex phenomenon is more notable in the high frequency
range. In order to investigate the transition law of the fundamental periodic
motion, the transition zone between motion 1-1-1 and 1-2-2 is enlarged locally as
Fig. 5. With decrease in @, during the transition from fundamental periodic 1-1-1
motion to 1-2-2 motion, at first, 2-2-2 and 4-4-4 periodic motion via period
doubling bifurcation occurs, and then the system falls into chaos via period
doubling bifurcation sequences. With decrease in @ further, after a narrow
window of chaos, 2-4-2 motion (maybe 2-2-4 motion occurs due to different
initial conditions) is separated from the chaos via grazing bifurcation, as o is
decreased progressively, 2-4-2 motion undergoes a succession of period doubling
bifurcation, which eventually results in chaotic motions, and the region of chaotic
motion becomes wider than that of high forcing frequency. With decrease in @
further, 1-1-2 motion (maybe 1-2-1 motion occurs due to different initial
conditions) is separated from the chaos, the system settles into chaotic motion
again with @ decrease, finally, 1-2-2 symmetrical motion is generated after a
wider region of chaos.
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Fig. 5. The global bifurcation of w— X, f, =0.01

In order to find mutual transition law of the adjacent fundamental periodic
motions sequence, numerical analysis is carried out with the same system
parameters and the same range of control parameter @, the difference is that the
control parameter @ changes from low to high as shown in Fig. 5. The transition
law is similar in the forcing frequency interval w<[3.5, 4.8], but it is markedly

different in the forcing frequency interval @ <[4.8, 5.942] compared with that @

decrease. When the @ decreases in the region, the bifurcations are period
doubling bifurcations, but when the @ increases in the same region, at first, 3-3-6
motion is separated from the chaos via reverse period doubling bifurcation, and
then 2-2-4 motion occurs via Saddle-node bifurcation, we can observe that the
value of @ increase of the bifurcation occurs is different when the @ varies in
different direction as shown in Fig. 5.

As shown in Fig. 5, there three hysteresis intervals in the transition zone
between motion 1-1-1 and 1-2-2, two types of periodic motions are stable and can
coexist depending on the initial conditions of the system in the hysteresis
intervals, we name it hysteresis zone, denoted with HR. The bifurcation boundary

of HR is marked with dotted lines. Here,sN, , ., PD, , , and PDj_, ,denote the

curves of Saddle-node, period doubling bifurcation and reverse period doubling
bifurcation of n-p-q motion, respectively. The first hysteresis zone HRy is formed
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by two curves SN,,, (@ =5.942) and PD,,, (@ =5.79), in which the 1-1-2
motion and 1-1-1as motion coexist, the phase portrait of this periodic motion is
shown in Fig. 6(a) and 6(d). The second hysteresis zone HR: is formed by two
curvesPD, ,, (®=5.79) and PD; , , (@ =5.575), in which 1-1-2 motion and 2-2-
2as motion coexist, the phase portrait of this periodic motion is shown in Fig. 6(b)
and 6(e), the third hysteresis zone HRs3 is formed by two curves SN, ,
(®w =5.015) and PD, ,, ( w =4.962), where 2-4-2 motion and 3-3-6 motion
coexist, the phase portrait of this periodic motion is shown in Fig. 6(c) and 6(f).
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Fig. 6. Phase plane portraits of the hysteresis zone:
(8) @=5.85, 1-1-1as motion; (b) @ =5.67, 2-2-2as motion; (c) @ =5.01, 2-4-2 motion;
(d) @=5.85, 1-1-2 motion; (e) @ =5.67,1-1-2 motion; (f) w =5.01, 3-3-6 motion.

5. Conclusions

Dynamics analysis of a two-degree-of-freedom dry friction vibro-impact
system with symmetric clearances are studied. The judgment method of the
sticking motion and sliding motion of the system are given. Complicated
dynamics analysis are carried out by numerical simulation. Numerical simulation
results indicate that the system exist complete 1-p-p fundamental periodic motions
sequence. With decrease in @, the region of fundamental periodic motions
becomes smaller, and the region of chaos becomes wider. The impact number p
increases continuously and the impact velocity decreases continuously with
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decrease in @, when the impact number p becomes large enough, the system
occurs chattering motion.

The route of the fundamental periodic motion to chaos is similar, i. e., with
decrease in @, symmetric 1-1-1 fundamental periodic motion transits into
asymmetric 1-1-1as fundamental periodic motion via pitchfork bifurcation, and
finally falls into chaos via period-doubling bifurcation sequence.

The mutual transition process between the adjacent fundamental 1-p-p
periodic motions is complex and rich periodic motions overlapped each other
when the @ in high frequency, which is irreversible in some frequency range.
Reverse period doubling bifurcation and Saddle-node bifurcation occur when @
sweeps in increasing direction, but period doubling bifurcation occurs when @
sweeps in decreasing direction. Due to the value of the bifurcation parameter is
different, thus a series of hysteresis zone occurs in which two types of periodic
motions coexist.
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