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ON THE ULAM-HYERS STABILITY OF BIHARMONIC EQUATION

Daniela Marian1, Sorina Anamaria Ciplea2, Nicolaie Lungu3

In this paper we investigate the Ulam-Hyers stability of the biharmonic

equation in the class of circular symmetric functions. Biharmonic equation has many

applications, for example in elasticity, fluid mechanics and many other areas. We apply

our results in elasticity and civil engineering. We consider a circular plane plate. In

this case the solutions will be functions with circular symmetry. In general the unknown

functions are u = u (r, θ) but in the case of the circular symmetry u = u (r). The

biharmonic equation ∆2u = p
D

becomes r4 d4u
dr4

+ 2r3 d3u
dr3

− r2 d2u
dr2

+ r du
dr

= r4 p
D
, where

p is the normal pressure load to the plate and D is the flexural rigidity.
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1. Introduction

The Ulam stability is an important concept in the theory of functional equations.

The origin of Ulam stability theory was an open problem formulated by Ulam, in 1940,

concerning the stability of homomorphism [14]. The first partial answer to Ulam’s question

came within a year, when Hyers [5] proved a stability result, for additive Cauchy equation in

Banach spaces. The first result on Hyers-Ulam stability of differential equations was given

by Obloza [9]. Alsina and Ger investigated the stability of differential equations y′ = y [1].

The result of Alsina and Ger was extended by many authors [3], [6], [7], [8], [11], [12], [13]

to the stability of the first order linear differential equation and linear differential equations

of higher order. In [2] Brzdek, Popa, Rasa and Xu presented a unified and systematic

approach to the field. Generally, we say that a differential equation is Ulam stable if for

every approximate solution of the differential equation, there exists an exact solution near

it [1].

Ulam-Hyers stability has many applications in physics, economy, engineering, etc. In

[4] Hegyi and Jung studied Ulam-Hyers stability for the Laplace’s equation, in the class of

circular symmetric functions. The solutions of Laplace ecuations, called harmonic functions,

are very important in the field of electromagnetism, astronomy, thermodynamics and fluid

dynamics.
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The goal of this paper is to obtain some results on generalized Ulam-Hyers stability

for the biharmonic equation, in the class of circular symmetric functions. The biharmonic

equation arises in areas of continuum mechanics, including linear elasticity theory. It is used

in modeling of the thin structures that react elastically to external forces.

In our approach we will use some results of Popa and Pugna [10] concerning the

stability of Euler’s differential equations. For the sake of convenience for the reader we

recall some notations from [10].

Let (X, ‖.‖) a Banach space over C. Let I = (a, b), 0 ≤ a < b ≤ ∞.

For c ∈ [a, b] and α ∈ C define

Φα (h) (x) := e<α·x ·
∣∣∣∣∫ x

c

e−<α·t · h (t) dt

∣∣∣∣ , x ∈ I, (1)

for all functions h : I → C with the property that the right hand of (1) exists and is finite.

<(α) stands for the real part of the complex number α.

2. Main results

We consider the homogeneous biharmonic equation

∆2u = 0. (2)

If the function u : I → X, I = (a, b), 0 ≤ a < b ≤ ∞ is circular symmetric, that is u = u (r),

then the equation (2) can be written

r4
d4u

dr4
+ 2r3

d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
= 0.

This is an Euler’s type equation. The inhomogeneous equation is

r4
d4u

dr4
+ 2r3

d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
= f (r) , (3)

where f : I → X is a continuous function. We suppose that the functions f, g, where

g : I → X, g (r) = f(r)
r are bounded on I.

In what follows we will study generalized Ulam-Hyers stability for the equation (3).

Definition 2.1. The equation (3) is called generalized Ulam-Hyers stable if for every ε : I →
(0,∞) there exists a function ψ : I → (0,∞) depending on ε such that for all u ∈ C4 (I,X)

satisfying ∥∥∥∥r4 d4udr4 + 2r3
d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
− f (r)

∥∥∥∥ ≤ ε (r) , r ∈ I, (4)

there exists a solution u1 ∈ C4 (I,X) of the equation (3) with the property

‖u (r)− u1 (r)‖ ≤ ψ (r) , r ∈ I.

Let du
dr = v (r) . Hence, the equation (3) becomes

r3
d3v

dr3
+ 2r2

d2v

dr2
− r dv

dr
+ v − 1

r
f (r) = 0. (5)

A result on classical Ulam-Hyers stability is given in the next theorem.
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Theorem 2.1. Let ε > 0. Then for every v ∈ C3 (I,X) satisfying∥∥∥∥r3 d3vdr3 + 2r2
d2v

dr2
− r dv

dr
+ v − 1

r
f (r)

∥∥∥∥ ≤ ε, r ∈ I, (6)

there exists a solution w ∈ C3 (I,X) of the equation (5) with the property

‖v (r)− w (r)‖ ≤ Lε, r ∈ I,

where

L =

{
(b−a)3

(b+a)3
, if a > 0, b ∈ (0,∞)

1, if a = 0 or b =∞
, (7)

that is the equation (5) is Ulam-Hyers stable.

Proof. Let v be a solution of (6). According to Theorem 2.4 from [10] it follows that there

exists a solution w of the equation (5) such that

‖v (r)− w (r)‖ ≤ Lε, r ∈ I,

where

L =


∏3
i=1

1
|<λk| ·

|b<λk−a<λk |
b<λk+a<λk

, if a > 0, b ∈ R
1∏3

i=1|<λk|
, if a = 0 or b =∞

,

whereλ1, λ2, λ3 ar the roots of the characteristic equation

λ (λ− 1) (λ− 2) + 2λ (λ− 1)− λ+ 1 = 0,

that is λ1 = λ2 = 1 and λ3 = −1.

We have L =

{
1
1 ·
|b−a|
b+a ·

1
1 ·
|b−a|
b+a ·

1
|−1| ·

|b−1−a−1|
b−1+a−1 = (b−a)3

(b+a)3
, if a > 0, b ∈ (0,∞)

1, if a = 0 or b =∞
.

�

Theorem 2.2. Let ϕ : (a, b) → (0,∞) be a given function such that Φ−1 ◦ Φ1 ◦ Φ1 (ϕ) (r)

exists and is finite for c = a. Then for every v ∈ C3 (I,X) satisfying∥∥∥∥r3 d3vdr3 + 2r2
d2v

dr2
− r dv

dr
+ v − 1

r
f (r)

∥∥∥∥ ≤ ϕ (r) , r ∈ I, (8)

there exists a solution w ∈ C3 (I,X) of the equation (5) with the property

‖v (r)− w (r)‖ ≤ e−r ·
∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt, r ∈ I,

that is the equation (5) is generalized Ulam-Hyers stable.

Proof. Let v be a solution of (8). According to Theorem 2.3 from [10] it follows that there

exists a solution w of the equation (5) such that

‖v (r)− w (r)‖ ≤ Φλ3
◦ Φλ2

◦ Φλ1
(ϕ) (r) , r ∈ I,

where λ1, λ2, λ3 ar the roots of the characteristic equation

λ (λ− 1) (λ− 2) + 2λ (λ− 1)− λ+ 1 = 0,

that is λ1 = λ2 = 1 and λ3 = −1.
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We have

Φλ1 (ϕ) (r) = e<λ1r ·
∫ r

a

e−<λ1t · ϕ (t) dt = er ·
∫ r

a

e−t · ϕ (t) dt

Φλ2
◦ Φλ1

(ϕ) (r) = e<λ2r ·
∫ r

a

e−<λ2t · Φλ1
(ϕ) (t) dt =

= er ·
∫ r

a

e−t · et
(∫ t

a

e−s · ϕ (s) ds

)
dt = er ·

∫ r

a

(∫ t

a

e−s · ϕ (s) ds

)
dt

Φλ3
◦ Φλ2

◦ Φλ1
(ϕ) (r) = e<λ3r ·

∫ r

a

e−<λ3t · Φλ2
◦ Φλ1

(ϕ) (t) dt =

= e−r ·
∫ r

a

et · et
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt =

= e−r ·
∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt.

�

If we come back to initial function we obtain the following result. Let X = R.

Theorem 2.3. Let ε > 0. For every u ∈ C4 (I,X) satisfying∣∣∣∣r4 d4udr4 + 2r3
d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
− f (r)

∣∣∣∣ ≤ εr, r ∈ I,
there exists a solution u1 ∈ C4 (I,X) of the equation (3) with the property

|u (r)− u1 (r)| ≤ εL, r ∈ I,

where

L =

{
(b−a)4

(b+a)3
, if a > 0, b ∈ (0,∞)

b, if a = 0, b ∈ (0,∞)
.

If b =∞ then the equation (3) is not stable.

Proof. Let du
dr = v (r) . Hence, we get the inequality∣∣∣∣r4 d3vdr3 + 2r3

d2v

dr2
− r2 dv

dr
+ rv − f (r)

∣∣∣∣ ≤ εr, r ∈ I,
or ∣∣∣∣r3 d3vdr3 + 2r2

d2v

dr2
− r dv

dr
+ v − f (r)

r

∣∣∣∣ ≤ ε, r ∈ I. (9)

We apply Theorem 2.1 so for every v ∈ C3 (I,X) satisfying (9) there exists a solution

w ∈ C3 (I,X) of the equation (5) with the property

|v (r)− w (r)| ≤ εL, r ∈ I,

where L is given by (7). Let u1 be a function such that du1

dr = w (r) and u (a) = u1 (a) .

Then ∣∣∣∣dudr (r)− du1
dr

(r)

∣∣∣∣ ≤ εL, r ∈ I,
or

−εL ≤ du

dr
(r)− du1

dr
(r) ≤ εL, r ∈ I. (10)
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Firstly we suppose that a > 0, b ∈ (0,∞). Integrating from a to r in (10) we have

−εL (r − a) ≤ u (r)− u1 (r) ≤ εL (r − a) , r ∈ I, (11)

that is

|u (r)− u1 (r)| ≤ εL (r − a) = ε
(b− a)

3

(b+ a)
3 (r − a) ≤ ε (b− a)

4

(b+ a)
3 .

We suppose now that a = 0, b ∈ (0,∞). Integrating from a to r in (10) we have

|u (r)− u1 (r)| ≤ εr ≤ εb.

If b =∞ then the equation (3) is not stable. �

Let X = R.

Theorem 2.4. Let ε : I → (0,∞) be a bounded and continuous function on I. For every

u ∈ C4 (I,X) satisfying∣∣∣∣r4 d4udr4 + 2r3
d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
− f (r)

∣∣∣∣ ≤ ε (r) , r ∈ I,

there exists a solution u1 ∈ C4 (I,X) of the equation (3) with the property

|u (r)− u1 (r)| ≤
∫ r

a

(
e−p ·

∫ p

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt

)
dp, r ∈ I, (12)

where ϕ (r) = ε(r)
r

Proof. Let du
dr = v (r) . Hence, we get the inequality∣∣∣∣r4 d3vdr3 + 2r3

d2v

dr2
− r2 dv

dr
+ rv − f (r)

∣∣∣∣ ≤ ε (r) , r ∈ I,

or ∣∣∣∣r3 d3vdr3 + 2r2
d2v

dr2
− r dv

dr
+ v − f (r)

r

∣∣∣∣ ≤ ε (r)

r
, r ∈ I. (13)

We apply Theorem 2.2 for ϕ (r) = ε(r)
r , so for every v ∈ C3 (I,X) satisfying (13) there exists

a solution w ∈ C3 (I,X) of the equation (5) with the property

|v (r)− w (r)| ≤ e−r ·
∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt, r ∈ I.

Let u1 be a function such that du1

dr = w (r) and u (a) = u1 (a) . Then∣∣∣∣dudr (r)− du1
dr

(r)

∣∣∣∣ ≤ e−r · ∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt, r ∈ I,

that is

− e−r ·
∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt ≤ du

dr
(r)− du1

dr
(r) ≤

≤ e−r ·
∫ r

a

e2t
(∫ t

a

(∫ z

a

e−s · ϕ (s) ds

)
dz

)
dt. (14)

Integrating from a to r in (14) we obtain the inequality (12). �
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3. Applications

We consider, now, the problem of the bending of a uniform circular thin plate sub-

jected to a load force p perpendicular to the plane of the plate. Let u be the vertical

displacement. It is convenient to express the governing differential equation in polar coordi-

nates r, θ. Since the plate geometry is symmetric and also the load distribution p is assumed

to be axis-symmetric, the governing differential equation is

r4
d4u

dr4
+ 2r3

d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
= r4

p (r)

D
, (15)

where D is the flexural rigidity factor, which includes all the elastic constants related to the

material. The stress components in this case are

σr =
1

r

du

dr
, σθ =

d2u

dr2
, τrθ = 0. (16)

We specify that in practical examples and in general, for the biharmonic equations are

imposed boundedness conditions for the solutions, at origin.

Remark 3.1. The above results can be applied for the equation (15) taking f (r) = r4 p(r)D
and also for the stability of stress components σr.

We suppose that the functions f, g, where g : I → R, g (r) = f(r)
r are bounded on I.

Let X = R.

Theorem 3.1. Let ε > 0. For every u ∈ C4 (I,X) satisfying∣∣∣∣r4 d4udr4 + 2r3
d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
− r4 p (r)

D

∣∣∣∣ ≤ εr, r ∈ I, (17)

there exists a solution u1 ∈ C4 (I,X) of the equation (15) such that:

(1)

|u (r)− u1 (r)| ≤ εL, r ∈ I, (18)

where

L =

{
(b−a)4

(b+a)3
, if a > 0, b ∈ (0,∞)

b, if a = 0, b ∈ (0,∞)
, (19)

that is the equation (15) is generalized Ulam-Hyers stable. If b =∞ then the equation

(15) is not stable.

(2) the corresponding stress components σr and σ′r satisfy the inequality

|σr − σ′r| ≤
1

r
εL, r ∈ I.

where L is given by (7).

Proof. (1) It follows directly from Theorem 2.3.

(2) Let du
dr = v (r) . Hence, we get the inequality∣∣∣∣r4 d3vdr3 + 2r3

d2v

dr2
− r2 dv

dr
+ rv − r4 p (r)

D

∣∣∣∣ ≤ εr, r ∈ I,
or ∣∣∣∣r3 d3vdr3 + 2r2

d2v

dr2
− r dv

dr
+ v − r3 p (r)

D

∣∣∣∣ ≤ ε, r ∈ I. (20)
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We apply Theorem 2.1 so for every v ∈ C3 (I,X) satisfying (20) there exists a solution

w ∈ C3 (I,X) of the equation

r3
d3v

dr3
+ 2r2

d2v

dr2
− r dv

dr
+ v − r3 p (r)

D
= 0, r ∈ I,

with the property

|v (r)− w (r)| ≤ εL, r ∈ I,

where L is given by (19). Let u1 be a function such that du1

dr = w (r) and u (a) = u1 (a) .

Then ∣∣∣∣dudr − du1
dr

∣∣∣∣ ≤ εL, r ∈ I.
Let σr and σ′r be the corresponding stress components. Hence

|σr − σ′r| =
∣∣∣∣1r dudr − 1

r

du1
dr

∣∣∣∣ =
1

r

∣∣∣∣dudr − du1
dr

∣∣∣∣ ≤ 1

r
εL, r ∈ I.

�

4. Conclusions

We studied the generalized Ulam-Hyers stability of the biharmonic equation in the

class of circular symmetric functions. We applied our results in elasticity in the sense that for

every approximate solution u satisfying (17), there exists an exact solution u1 of (15) near

it, that is the relation (18) is satisfied. From a different perspective, approximate solution

can be viewed in relation to perturbation theory, as any approximate solution of (17) is an

exact solution of the perturbed equation

r4
d4u

dr4
+ 2r3

d3u

dr3
− r2 d

2u

dr2
+ r

du

dr
= r4

p (r)

D
+ h (r) ,

for some perturbation h satisfying |h (r)| ≤ εr, r ∈ I.
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