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ON THE ULAM-HYERS STABILITY OF BIHARMONIC EQUATION

Daniela Marian®, Sorina Anamaria Ciplea?, Nicolaie Lungu®

In this paper we investigate the Ulam-Hyers stability of the biharmonic
equation in the class of circular symmetric functions. Biharmonic equation has many
applications, for example in elasticity, fluid mechanics and many other areas. We apply
our results in elasticity and civil engineering. We consider a circular plane plate. In

this case the solutions will be functions with circular symmetry. In general the unknown

functions are w = w(r,0) but in the case of the circular symmetry w = u(r). The
) . ) 4 3 2
biharmonic equation A?u = & becomes 7’4372‘ + 27’3% - T2ZT§‘ + 7‘% =rtL where

p is the normal pressure load to the plate and D is the flexural rigidity.
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1. Introduction

The Ulam stability is an important concept in the theory of functional equations.
The origin of Ulam stability theory was an open problem formulated by Ulam, in 1940,
concerning the stability of homomorphism [14]. The first partial answer to Ulam’s question
came within a year, when Hyers [5] proved a stability result, for additive Cauchy equation in
Banach spaces. The first result on Hyers-Ulam stability of differential equations was given
by Obloza [9]. Alsina and Ger investigated the stability of differential equations vy’ =y [1].
The result of Alsina and Ger was extended by many authors [3], [6], [7], [8], [11], [12], [13]
to the stability of the first order linear differential equation and linear differential equations
of higher order. In [2] Brzdek, Popa, Rasa and Xu presented a unified and systematic
approach to the field. Generally, we say that a differential equation is Ulam stable if for
every approximate solution of the differential equation, there exists an exact solution near
it [1].

Ulam-Hyers stability has many applications in physics, economy, engineering, etc. In
[4] Hegyi and Jung studied Ulam-Hyers stability for the Laplace’s equation, in the class of
circular symmetric functions. The solutions of Laplace ecuations, called harmonic functions,
are very important in the field of electromagnetism, astronomy, thermodynamics and fluid

dynamics.
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The goal of this paper is to obtain some results on generalized Ulam-Hyers stability
for the biharmonic equation, in the class of circular symmetric functions. The biharmonic
equation arises in areas of continuum mechanics, including linear elasticity theory. It is used
in modeling of the thin structures that react elastically to external forces.

In our approach we will use some results of Popa and Pugna [10] concerning the
stability of Euler’s differential equations. For the sake of convenience for the reader we
recall some notations from [10].

Let (X, ||.||) a Banach space over C. Let I = (a,b), 0 <a <b < oo.

For ¢ € [a,b] and a € C define

D, (h) (z) == Re. ,rel, (1)

/ e~ Rt U (t)dt

for all functions h : I — C with the property that the right hand of (1) exists and is finite.

() stands for the real part of the complex number «.

2. Main results
We consider the homogeneous biharmonic equation
Ay = 0. (2)

If the function u : I — X, I = (a,b), 0 < a < b < oo is circular symmetric, that is u = u (r),

then the equation (2) can be written

d*u d3u d?u du
4 3 2
— 4+ 2r°— —r— — =0.
" e a3 a2 +rdr
This is an Euler’s type equation. The inhomogeneous equation is
d*u d3u d?u du
4 3 2 _
r + 27 e R +ra—f(r), (3)
where f : I — X is a continuous function. We suppose that the functions f, g, where

g:I—=X,9(r)= @ are bounded on T.

In what follows we will study generalized Ulam-Hyers stability for the equation (3).

Definition 2.1. The equation (3) is called generalized Ulam-Hyers stable if for every e : I —
(0,00) there exists a function 1 : I — (0,00) depending on € such that for all uw € C* (I, X)
satisfying

d3

d4u
4 3
T+ 2r—— —

5 d*u du

T W—FT%—JC(T)

u
dr3

there exists a solution u; € C* (I, X) of the equation (3) with the property
|u

Let % = v (r) . Hence, the equation (3) becomes

<e(r),rel, (4)

(r)—uw (M| <v(r),rel.

d3v d?v dv 1
3 2 _
7’%4’ Tpfraﬁ"l)*;f(’r)—o (5)

A result on classical Ulam-Hyers stability is given in the next theorem.
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Theorem 2.1. Let ¢ > 0. Then for every v € C3 (I, X) satisfying

d? d? d 1
3—U+2r2—v—r—v+"u—ff(r)
T

< I
e dr? dr =&ered (6)

there exists a solution w € C3 (I, X) of the equation (5) with the property
lo(r) —w(r)|| < Le,r €1,

where

(b+a)?
1, ifa=0o0r b=0o0

(b—a)® .
L—{ , if a > 0,b € (0,00) 1)

that is the equation (5) is Ulam-Hyers stable.

Proof. Let v be a solution of (6). According to Theorem 2.4 from [10] it follows that there
exists a solution w of the equation (5) such that

lo(r) —w(r)]| < Le,r €1,

where
BRM _ Bk |

3 .
I ILi-. ‘éﬁ]j\k" Ty Ha>0,bER
ifa=0o0rb=0oc

1 b)
[T IRAk]
where\q, Ao, A3 ar the roots of the characteristic equation

AA=1(A=2)+22X(A—1)—A+1=0,

that is )\1 = )\2 =1 and )\3 = —1.
1 .|b71—u71

WehaveL:{ L bta 1

1 b—a 1 b—a b—a)® .
L ‘b+a| "T1 b THa T Eb+a;3’ if a >0, € (0, 00)

1, ifa=0o0rb=c0
O

Theorem 2.2. Let ¢ : (a,b) — (0,00) be a given function such that ®_1 o ®1 o Dy (p) (1)
exists and is finite for ¢ = a. Then for every v € C3 (I, X) satisfying

‘ 5 d3v d*v  dv

1
o 2 — = v — —f ()
T
there exists a solution w € C3 (I, X) of the equation (5) with the property

dr3 dr? dr
T t z
[v(r) —w(r)] <e™” / e* (/ (/ e ? ~g0(s)ds> dz) dt,r €1,

that is the equation (5) is generalized Ulam-Hyers stable.

<p(r),rel, (8)

Proof. Let v be a solution of (8). According to Theorem 2.3 from [10] it follows that there
exists a solution w of the equation (5) such that

[v(r) —w (r)]| < @x, 0 Pr, 0P, (@) (r), 7 €1,
where A1, A2, A3 ar the roots of the characteristic equation
AA=1DA=2)4+2 (A=1)=A+1=0,

that is )\1 = )\2 =1 and )\3 = —1.
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If we come back to initial function we obtain the following result. Let X = R.
Theorem 2.3. Let € > 0. For every u € C* (I, X) satisfying
d*u d3u d*u du
4 3 2
T W‘FQT ﬁ_T ﬁ‘f’?‘%—fﬁ“) <er,rel,
there exists a solution u; € C* (I, X) of the equation (3) with the property
lu(r) —uy (r)| <eL,r €1,
where s
b—a .
I Eb+a§3, ifa>0,b€ (0,00)
b, if a=0,b€ (0,00)

If b = oo then the equation (3) is not stable.
Proof. Let 9* = v (r). Hence, we get the inequality

d? d? d

7’4d—rg +27‘3d—7g ,T2d7: +rv—f(r) <errel,
or . ) -
d°v d“v dv fr
3 2
TF—FQT’@— df—i—v—igé,rel. (9)

We apply Theorem 2.1 so for every v € C?(I,X) satisfying (9) there exists a solution
w € C3 (I, X) of the equation (5) with the property

[v(r) —w(r)| <eL,r el

where L is given by (7). Let u; be a function such that dd% =w(r) and u(a) = vy (a).
Then

du duy
—_— - <eL I
d?” (r) dr (’r) —E 7T6 bl
or p p
U U1
—eL < — - — <elL I 1
el =< - (r) = (r)<eL,r e (10)
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Firstly we suppose that a > 0,b € (0, 00). Integrating from a to r in (10) we have

—eL(r—a)<u(r)—u(r)<eL(r—a),rel, (11)
that is
3 4
|U(T)_u1(r)|S&L(T—a):g%(r_a)gg(b a/)g.
(b+a) (b+a)
We suppose now that a = 0,b € (0,00). Integrating from a to r in (10) we have

lu(r) —uy (r)] <er < eb.
If b = oo then the equation (3) is not stable. O
Let X =R.

Theorem 2.4. Let € : I — (0,00) be a bounded and continuous function on I. For every
u € C* (I, X) satisfying

4
LA u

., s d3u _ 2d27u du
dr?

+ 21— = =1 e —l—r%—f(r)

o <e(r),rel,
there exists a solution u; € C* (I, X) of the equation (3) with the property

u(r)—ul(r)|§/ar (e—P-/ape% (/t (/:e_s-go(s)ds) dz)dt)dp,rel, (12)

G

where @ (1)

Proof. Let 9“ = v (r). Hence, we get the inequality

d3 d?
T4d77“§+ STZ—T2df—|—T”U—f(T’) <€(T),’I’€I,
or
d>v  dv f) el
3 2
ﬁ“r W_TI+U_7§ r ,7"6[. (13)
We apply Theorem 2.2 for ¢ (1) = ETT), so for every v € C3 (I, X) satisfying (13) there exists

a solution w € C3 (I, X) of the equation (5) with the property

v () — w () Se_r~/ar62t (/t (/:e_s-go(s)ds> dz) dt.rel.

Let u; be a function such that £4 = w (r) and u (a) = uy (a) . Then

T t z
Z:f(r)—ciznl(r)‘ﬁe_r-/ €2t</ (/ e_s-w(s)ds>dz>dt,rel,
that is

—e—’“-/:e%(/:(/aze—S-w(s)ds)dz>dtg?:(r)—agfmg
§er~/arezt</at(/:eS~<p(5)d$)dz>dt. (14)

Integrating from a to r in (14) we obtain the inequality (12). O
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3. Applications

We consider, now, the problem of the bending of a uniform circular thin plate sub-
jected to a load force p perpendicular to the plane of the plate. Let u be the vertical
displacement. It is convenient to express the governing differential equation in polar coordi-
nates 7, 6. Since the plate geometry is symmetric and also the load distribution p is assumed
to be axis-symmetric, the governing differential equation is

d*u d3u d*u du p(r)
4@y gdiu  pd7u AUy
Tt T s T —Hndr "D

where D is the flexural rigidity factor, which includes all the elastic constants related to the

+2

(15)

material. The stress components in this case are
_ ldu d?u

Op = ——,009 = Tro
rdr’ dr?’

We specify that in practical examples and in general, for the biharmonic equations are

~0. (16)

imposed boundedness conditions for the solutions, at origin.

4p(r)

Remark 3.1. The above results can be applied for the equation (15) taking f (r) = r*55

and also for the stability of stress components o,..

We suppose that the functions f, g, where g : I — R, g (r) = @ are bounded on I.
Let X =R.
Theorem 3.1. Let € > 0. For every u € C* (I, X) satisfying
d*u d3u d>u  du p(r)
4 3 2 4
2yl 22 2 ARV
T T T e e T D
there ezists a solution u; € C* (I, X) of the equation (15) such that:

(1)

<errel, (17)

|u(r) —uy (r)]| <eL,rel, (18)

where

(b—a)
L—{ T ifa>0,b€ (0,00) (19)

b, if a=0,b€ (0,00)
that is the equation (15) is generalized Ulam-Hyers stable. If b = oo then the equation
(15) is not stable.
(2) the corresponding stress components o, and ol. satisfy the inequality

1
lo, —ol| < —eL,r € 1.
r
where L is given by (7).

Proof. (1) It follows directly from Theorem 2.3.
(2) Let ‘fi—ﬁ = v (r). Hence, we get the inequality

d3 d? d p
T4dr§ 27"3?[7;)77"2?; +rv— s D(r)‘<5r’7’617
or 3 2 ()
d°v d“v dv p(r
3 2 SENV
Tdr3+2r 7dr2_r7dr+v_r D ‘<€,T€I. (20)
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We apply Theorem 2.1 so for every v € C3(I,X) satisfying (20) there exists a solution
w € C3 (I, X) of the equation

with the property

lv(r) —w(r)| <eL,rel,
where L is given by (19). Let u; be a function such that % =w(r) and u(a) = u (a).
Then

du  duy
— — —| <¢L 1.
ar  dr | =T <
Let o, and o/. be the corresponding stress components. Hence
ldu 1du 1|ldu dug 1
—ol == -S| == - 2| < ZeL el
lor =1 rdr 7 dr rlar ~ ar | ST

4. Conclusions

We studied the generalized Ulam-Hyers stability of the biharmonic equation in the
class of circular symmetric functions. We applied our results in elasticity in the sense that for
every approximate solution u satisfying (17), there exists an exact solution u; of (15) near
it, that is the relation (18) is satisfied. From a different perspective, approximate solution
can be viewed in relation to perturbation theory, as any approximate solution of (17) is an
exact solution of the perturbed equation

d*u d3u d*u du p(r)
40U o 307U pdTU AUy
T T A T e e T D

for some perturbation h satisfying |h (r)| < er,r € I.

+h(r),
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