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SOME APPROXIMATE FIXED POINT RESULTS FOR

GENERALIZED α-CONTRACTIVE MAPPINGS

M. A. Miandaragh1, Mihai Postolache2, Sh. Rezapour3

Recently, Samet, Vetro and Vetro [Nonlinear Anal. 75 (2012) 2154-2165]
introduced α-ψ-contraction maps and gave some results on the mappings on com-
plete metric spaces. On the other hand, by introducing a type of generalized con-
tractive mappings, Aleomraninejad, Rezapour and Shahzad [Appl. Math. Lett.
24 (2011) 1037-1040] generalized some results about the Suzuki’s method. In this
paper, by using the main idea of these works, we introduce the concept of gener-
alized α-contractive mapping and give two results about approximate fixed points
and fixed points of the mappings on metric spaces. We show that these results
generalize some related classical results in the literature.
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point.
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1. Introduction

Let (X, d) be a metric space and T a selfmap on X. If α : X × X → [0,∞)
is a mapping and ε a positive number, then, according to [17], we say that T is α-
admissible whenever α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1. An element x0 ∈ X is called
ε-fixed point of T whenever d(T (x0), x0) < ε. We say that T has the approximate
fixed point property whenever T has an ε-fixed point for all ε > 0.

As we know, there are selfmaps which have approximate fixed points but have
no fixed points. The interest is the study of approximate fixed points, associated
to several classes of mappings, is given by the important number of works in this
direction; please, see [2], [4], [10], [14] and [16], for illustrative examples.

To develop our new results, we appeal the following lemma [5].

Lemma 1.1. Let (X, d) be a metric space, and T : X → X a mapping such that T
is asymptotic regular, that is, d(Tnx, Tn+1x) → 0 for all x ∈ X. Then T has the
approximate fixed point property.

Now, denote by R the set of all continuous mappings g : [0,∞)5 −→ [0,∞)
satisfying the following conditions, for more details see [1]:

a) g(1, 1, 1, 2, 0) = g(1, 1, 1, 0, 2) = h ∈ (0, 1),
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b) g(αx1, αx2, αx3, αx4, αx5) ≤ αg(x1, x2, x3, x4, x5), for all (x1, x2, x3, x4, x5)
in [0,∞)5 and α ≥ 0,

c) if xi, yi ∈ [0,∞) and xi < yi for i = 1, . . . , 4, then

g(x1, x2, x3, x4, 0) < g(y1, y2, y3, y4, 0), g(x1, x2, x3, 0, x4) < g(y1, y2, y3, 0, y4).

This class of mappings has the property in Proposition 1.1, see [1] and Lemma
1.3 in [9], which is necessary for developing our new results.

Proposition 1.1. If g ∈ R and u, v ∈ [0,∞) are such that

u ≤ max{g(v, v, u, v + u, 0), g(v, v, u, 0, v + u), g(v, u, v, v + u, 0), g(v, u, v, 0, v + u)},

then u ≤ hv.

Now, we are ready to state and prove our main results.

2. Main Results

First, by using the main idea of [1] and [17], we introduce the notion of gen-
eralized α-contractive mapping. In this respect, we emphasize that throughout
this paper we suppose that (X, d) is a metric space, T is a selfmap on X and
α : X ×X → [0,∞) is a mapping.

We say that the selfmap T of X is a generalized α-contractive mapping when-
ever there exists g ∈ R such that

α(x, y)d(Tx, Ty) ≤ g(d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)),

for all x, y ∈ X.

Theorem 2.1. Let (X, d) be a metric space and T a generalized α-contractive and
an α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T
has an approximate fixed point.

Proof. Fix 1 > r > h and x0 ∈ X such that α(x0, Tx0) ≥ 1. Define the sequence
{xn} by xn+1 = Tn+1x0 for all n ≥ 0.

If xn = xn+1, for some n, then we have nothing to prove.
Assume that xn ̸= xn+1 for all n ≥ 0. Since T is α-admissible, it is easy to

check that α(xn, xn+1) ≥ 1 for all n.
Since

d(x1, x2) = d(Tx0, Tx1) ≤ α(x0, x1)d(Tx0, Tx1)

≤ g(d(x0, x1), d(x1, Tx1), d(x0, Tx0), d(x0, Tx1), d(x1, Tx0))

≤ g(d(x0, x1), d(x1, x2), d(x0, x1), d(x0, x1) + d(x1, x2), 0),

by using Proposition 1.1, we obtain d(x1, x2) ≤ hd(x0, x1) < rd(x0, x1).
Since

d(x2, x3) = d(Tx1, Tx2) ≤ α(x1, x2)d(Tx1, Tx2)

≤ g(d(x1, x2), d(x2, Tx2), d(x1, Tx1), d(x1, Tx2), d(x2, Tx1))

≤ g(d(x1, x2), d(x2, x3), d(x1, x2), d(x1, x2) + d(x2, x3), 0),

again by using Proposition 1.1, we obtain

d(x2, x3) ≤ hd(x1, x2) < rd(x1, x2) < r2d(x0, x1).
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By continuing this process, we obtain d(xn, xn+1) < rnd(x0, x1) for all n.
Hence, d(Tn+1x0, T

nx0) → 0, and from Lemma 1.1, we conclude that T has the
approximate fixed point property. �

The following example shows that there are generalized α-contractive selfmaps
on non-complete metric spaces, satisfying Theorem 2.1, which have no fixed point
while have approximate fixed points.

Example 2.1. LetX = (0, 1), d(x, y) = |x−y| and α(x, y) = 1 whenever x2 = y and
α(x, y) = 1

20 otherwise. Define the selfmap T on X by Tx = x2 for all x ∈ X. Also,

define g ∈ R by g(x1, x2, x3, x4, x5) =
9
20(x2+x3). Then, it is easy to check that T is

generalized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1
for x0 =

1
2 .

The following corollaries show us that there are different types of generalized
α-contractive mappings satisfying Theorem 2.1. One can provide many examples
for each type of such mappings. We shall provide some examples for each type of
the maps but one could provide more examples.

Corollary 2.1. Let (X, d) be a complete metric space and T a continuous, gener-
alized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for
some x0 ∈ X. Then T has a fixed point.

Proof. By using a similar argument in proof of Theorem 2.1, we obtain

d(xn, xn+1) ≤ hd(xn−1, xn) < rd(xn−1, xn) < rnd(x0, x1),

for all n. If suppose m < n, then it is easy to see that

d(xm, xn) ≤ (rm + rm+1 + · · ·+ rn−1)d(x0, x1) <
rm

1− r
d(x0, x1).

Thus, {xn} is a Cauchy sequence. Since (X, d) is complete, there exists x∗ ∈ X such
that xn → x∗. Moreover, T is continuous, Txn → Tx∗ and so Tx∗ = x∗. �

As we know, Banach proved his contraction principle result in 1922; please,
see [3]. Following this direction, we say that the selfmap T is α-contractive whenever
exists λ ∈ (0, 1) such that α(x, y)d(Tx, Ty) ≤ λd(x, y) for all x, y ∈ X.

Corollary 2.2. Let (X, d) be a metric space and T an α-contractive and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1 for some x0 ∈ X. Then T has the approxi-
mate fixed point property.

Proof. Consider g ∈ R given by g(x1, x2, x3, x4, x5) = λx1. Then, T is a generalized
α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some
x0 ∈ X. Hence by Theorem 2.1, T has the approximate fixed point property. �

In 2011, Haghi, Rezapour and Shahzad proved that some fixed point gener-
alizations are not real generalizations [11]. The following example shows that these
results are real ones.

Example 2.2. Let X = [0,∞) and d(x, y) = |x − y|. Define the selfmap T on X
by Tx = 4

3x for all x ∈ X and put λ = 1
2 . Then, the selfmap T is not contractive.

Let λ ∈ [0, 1). Define α(x, y) = µ for all x, y ∈ X, where µ ≤ 3λ
4 . It is easy to see

that T is α-contractive.
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In 1968, the notion of Kannan-contraction is introduced by Kannan [13]. Now,
we say that the selfmap T on a metric space is α-Kannan mapping whenever there
exists β ∈ (0, 12) such that α(x, y)d(Tx, Ty) ≤ β(d(x, Tx)+d(y, Ty)) for all x, y ∈ X.

Corollary 2.3. Let (X, d) be a metric space and T an α-Kannan and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has the approxi-
mate fixed point property.

Proof. Consider g ∈ R by the formula g(x1, x2, x3, x4, x5) = β(x2+x3). Then, T is a
generalized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1
for some x0 ∈ X. By Theorem 2.1, T has the approximate fixed point property. �

Corollary 2.4. Let (X, d) be a complete metric space and T a continuous, α-
Kannan and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X.
Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = β(x2 + x3). Then, by using Corollary
2.1, it follows that T has a fixed point. �

The following example shows that there exist α-Kannan mappings which are
not Kannan maps.

Example 2.3. Let X = [0,∞) and d(x, y) = |x− y|. Define the selfmap T on X by
Tx = 5

4x for all x ∈ X. Put β = 1
4 and α(x, y) = µ for all x, y ∈ X, where µ ≤ 1

20 .
Then, it is easy to check that the selfmap T is not Kannan map whereas T is an
α-Kannan map.

In 1972, the notion of Chatterjea-contraction is introduced by Chatterjea in [8].
Now, we say that the selfmap T is α-Chatterjea mapping whenever exists β ∈ (0, 12)
such that α(x, y)d(Tx, Ty) ≤ β(d(x, Ty) + d(y, Tx)) for all x, y ∈ X.

Corollary 2.5. Let (X, d) be a metric space, T an α-Chatterjea and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has the approxi-
mate fixed point property.

Proof. Let g ∈ R given by the formula g(x1, x2, x3, x4, x5) = β(x4 + x5). Then, T is
a generalized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1
for some x0 ∈ X. Hence by using Theorem 2.1, T has the approximate fixed point
property. �

Next corollary generalizes the results in the literature about fixed point of
Chatterjea selfmaps.

Corollary 2.6. Let (X, d) be a complete metric space and T a continuous, α-
Chatterjea and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some
x0 ∈ X. Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = β(x4 + x5). Then by using Corollary
2.1, T has a fixed point. �

The following example shows that there exist α-Chatterjea mappings which
are not Chatterjea selfmaps.
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Example 2.4. Let X = [0,∞) and d(x, y) = |x− y|. Define the selfmap T on X by
Tx = 4

3x for all x ∈ X. For each β ∈ (0, 12), put x = β and y = 3
4β. Then, it is easy

to see that T is not a Chatterjea mapping. If we put β = 1
4 and define α(x, y) = µ

for all x, y ∈ X, where µ ≤ 3
80 , then one can easily check that T is an α-Chatterjea

selfmap.

In 1972, the notion of Zamfirescu-contraction is introduced by Zamfirescu in
[18]. Now, we say that the selfmap T is α-Zamfirescu mapping whenever exists
β ∈ (0, 1) such that α(x, y)d(Tx, Ty) ≤ βMT (x, y) for all x, y ∈ X, where

MT (x, y) = max{d(x, y), 1
2
[d(x, Ty) + d(y, Tx)],

1

2
[d(x, Tx) + d(y, Ty)]}.

Corollary 2.7. Let (X, d) be a metric space and T an α-Zamfirescu and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has the approxi-
mate fixed point property.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = βmax{x1, 12 [x4 + x5],
1
2 [x2 + x3]}.

Then, T is a generalized α-contractive and α-admissible selfmap on X such that
α(x0, Tx0) ≥ 1 for some x0 ∈ X. Hence by using Theorem 2.1, T has the approxi-
mate fixed point property. �

Next corollary generalizes the results in the literature about fixed point of
Zamfirescu selfmaps.

Corollary 2.8. Consider (X, d) be a complete metric space and T a continuous,
α-Zamfirescu and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some
x0 ∈ X. Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = βmax{x1, 12 [x4+x5],
1
2 [x2+x3]}. Then

by using Corollary 2.1, T has a fixed point. �
The following example shows that there exist α-Zamfirescu mappings which

are not Zamfirescu selfmaps.

Example 2.5. Let X = [0,∞) and d(x, y) = |x− y|. Define the selfmap T on X by
Tx = 4

3x for all x ∈ X. For each β ∈ (0, 1), put x = β and y = 3
4β. Then, it is easy

to see that T is not a Zamfirescu mapping. If we put β = 1
4 and define α(x, y) = µ

for all x, y ∈ X, where µ ≤ 3
16 , then one can easily check that T is an α-Zamfirescu

selfmap.

In 1971, the notion of Reich-contraction is introduced by Reich ([15]). Follow-
ing this idea, we say that the selfmap T is α-Reich mapping whenever there exists
nonnegative real numbers α, β, γ with α+ β + γ < 1 such that

α(x, y)d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty), ∀ x, y ∈ X.

Corollary 2.9. Let (X, d) be a metric space and T an α-Reich and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has an approxi-
mate fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = αx1 + βx2 + γx3. Then, T is a gen-
eralized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1 for
some x0 ∈ X. Hence by using Theorem 2.1, T has the approximate fixed point
property. �
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Corollary 2.10. Let (X, d) be a complete metric space and T a continuous, α-Reich
and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then
T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = αx1 + βx2 + γx3. Then by using
Corollary 2.1, we get that T has a fixed point. �

The following example shows that there exist α-Reich mappings which are not
Reich selfmaps.

Example 2.6. Let X = [0,∞) and d(x, y) = |x − y|. Define the selfmap T on
X by Tx = 2x for all x ∈ X. For each α, β, γ ∈ (0, 1) with α + β + γ < 1, put
x = 0 and y = 1. Then, it is easy to see that T is not a Reich mapping. If we put
α = β = γ = 1

4 and define α(x, y) = µ for all x, y ∈ X, where µ ≤ 1
8 , then one can

easily check that T is an α-Reich selfmap.

In 1972, the notion of Ćirić-contraction is introduced by Ćirić in [7]. Now, we

say that the selfmap T is α-Ćirić mapping whenever there exists λ ∈ (0, 1) such that

α(x, y)d(Tx, Ty) ≤ λMT (x, y), ∀ x, y ∈ X,

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), 12 [d(x, Ty) + d(y, Tx)]}.

Corollary 2.11. Let (X, d) be a metric space and T an α-Ćirić and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has the approxi-
mate fixed point property.

Proof. Let g ∈ R given by g(x1, x2, x3, x4, x5) = λmax{x1, x2, x3, 12 [x4+x5]}. Then,
T is a generalized α-contractive and α-admissible selfmap on X with α(x0, Tx0) ≥ 1,
for some x0 ∈ X. Hence by using Theorem 2.1, T has the approximate fixed point
property. �
Corollary 2.12. Let (X, d) be a complete metric space and T a continuous, α-Ćirić
and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then
T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = βmax{x1, x2, x3, 12 [x4 + x5]}. Then by
using Corollary 2.1, T has a fixed point. �

The following example shows that there exist α-Ćirić mappings which are not
Ćirić selfmaps.

Example 2.7. Let X = [0,∞) and d(x, y) = |x− y|. Define the selfmap T on X by
Tx = 3

2x for all x ∈ X. For each λ ∈ (0, 1), put x = λ and y = 2
3λ. Then, it is easy

to see that T is not a Ćirić mapping. If λ ∈ (0, 1) and we define α(x, y) = µ for all

x, y ∈ X, where µ ≤ 2
3λ, then one can easily check that T is an α-Ćirić selfmap.

In 1972, the notion of Bianchini-contraction is introduced by Bianchini in
[6]. Now, we say that the selfmap T is α-Bianchini mapping whenever there exists
h ∈ (0, 1) such that α(x, y)d(Tx, Ty) ≤ hmax{d(x, Tx), d(y, Ty)} for all x, y ∈ X.

Corollary 2.13. Let (X, d) be a metric space and T an α-Bianchini and α-admissible
selfmap on X such that α(x0, Tx0) ≥ 1, for some x0 ∈ X. Then T has the approxi-
mate fixed point property.
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Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = hmax{x2, x3}. Then, T is a gener-
alized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1 for
some x0 ∈ X. Hence by using Theorem 2.1, T has the approximate fixed point
property. �

Next corollary generalizes the results in the literature about fixed point of
Bianchini selfmaps.

Corollary 2.14. Let (X, d) be a complete metric space, T a continuous, α-Bianchini
and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1 for some x0 ∈ X. Then T
has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = hmax{x2, x3}. Then by using Corol-
lary 2.1, T has a fixed point. �

The following example shows that there exist α-Bianchini mappings which are
not Bianchini selfmaps.

Example 2.8. Let X = [0,∞) and d(x, y) = |x− y|. Define the selfmap T on X by
Tx = 8

7x for all x ∈ X. For each h ∈ (0, 1), put x = h and y = 7
8h. Then, it is easy

to see that T is not a Bianchini mapping. If h = 1
4 and we define α(x, y) = µ for all

x, y ∈ X, where µ ≤ 1
64 , then one can easily check that T is an α-Bianchini selfmap.

In 1973, the notion of Hardy-Rogers-contraction is introduced by Hardy and
Rogers [12]. Now, we say that the selfmap T is α-Hardy-Rogers mapping whenever
there exist nonnegative real numbers a, b, c, e, f with a + b + c + 2max{e, f} < 1
such that

α(x, y)d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x, Ty)

for all x, y ∈ X.

Corollary 2.15. Let (X, d) be a metric space and T an α-Hardy-Rogers and α-
admissible selfmap on X such that α(x0, Tx0) ≥ 1 for some x0 ∈ X. Then T has
the approximate fixed point property.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = ax1+bx2+cx3+ex4+fx5. Then, T is
a generalized α-contractive and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1
for some x0 ∈ X. Hence by using Theorem 2.1, T has the approximate fixed point
property. �

The following corollary generalizes the results in the literature about fixed
point of Hardy-Rogers selfmaps.

Corollary 2.16. Let (X, d) be a complete metric space and T a continuous, α-
Hardy-Rogers and α-admissible selfmap on X such that α(x0, Tx0) ≥ 1 for some
x0 ∈ X. Then T has a fixed point.

Proof. Define g ∈ R by g(x1, x2, x3, x4, x5) = ax1 + bx2 + cx3 + ex4 + fx5. Then by
using Corollary 2.1, T has a fixed point. �

The following example shows that there exist α-Hardy-Rogers mappings which
are not Hardy-Rogers selfmaps.
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Example 2.9. Let X = [0,∞) and d(x, y) = |x − y|. Define the selfmap T on
X by Tx = 3x for all x ∈ X. For each nonnegative real numbers a, b, c, e, f with
a + b + c + 2max{e, f} < 1, put x = 0 and y = 1. Then, it is easy to see that
T is not a Hardy-Rogers mapping. If we put a = b = c = e = f = 1

8 and define

α(x, y) = µ for all x, y ∈ X, where µ ≤ 1
24 , then one can easily check that T is an

α-Hardy-Rogers selfmap.

3. Concluding remarks

In this article, we introduced the concept of generalized α-contractive mapping
and gave results about approximate fixed points and fixed points of mappings on
metric spaces. We proved that these results generalize some classical results in the
literature. The present work follows the direction of previous research articles, such
as Samet, Vetro and Vetro [17], Aleomraninejad, Rezapour and Shahzad [1].
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