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SOME APPROXIMATE FIXED POINT RESULTS FOR
GENERALIZED o-CONTRACTIVE MAPPINGS

M. A. Miandaragh!, Mihai Postolache?, Sh. Rezapour?

Recently, Samet, Vetro and Vetro [Nonlinear Anal. 75 (2012) 2154-2165]
introduced a--contraction maps and gave some results on the mappings on com-
plete metric spaces. On the other hand, by introducing a type of generalized con-
tractive mappings, Aleomraninejad, Rezapour and Shahzad [Appl. Math. Lett.
24 (2011) 1037-1040/ generalized some results about the Suzuki’s method. In this
paper, by using the main idea of these works, we introduce the concept of gener-
alized a-contractive mapping and give two results about approximate fixed points
and fixed points of the mappings on metric spaces. We show that these results
generalize some related classical results in the literature.

Keywords: Metric space, a-contractive mapping, approximate fixed point, fixed
point.
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1. Introduction

Let (X, d) be a metric space and T a selfmap on X. If a: X x X — [0, 00)
is a mapping and e a positive number, then, according to [17], we say that T is -
admissible whenever a(x,y) > 1 implies o(T'z,Ty) > 1. An element zp € X is called
e-fixed point of T' whenever d(T(zo),xo) < €. We say that T has the approximate
fixed point property whenever T has an e-fixed point for all £ > 0.

As we know, there are selfmaps which have approximate fixed points but have
no fixed points. The interest is the study of approximate fixed points, associated
to several classes of mappings, is given by the important number of works in this
direction; please, see [2], [4], [10], [14] and [16], for illustrative examples.

To develop our new results, we appeal the following lemma [5].

Lemma 1.1. Let (X,d) be a metric space, and T: X — X a mapping such that T
is asymptotic regular, that is, d(T"x, T" 'x) — 0 for all x € X. Then T has the
approzimate fixed point property.

Now, denote by R the set of all continuous mappings g: [0, 00)°

satisfying the following conditions, for more details see [1]:
a) g(1,1,1,2,0) = g(1,1,1,0,2) = h € (0, 1),

— [0, 00)
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b) glazy, aze, axs, axy, axs) < ag(x1, T2, 23,74, 75), for all (z1, 22, 23,74, 75)
in [0,00)® and o > 0,
c) if zj,y; € [0,00) and x; < y; for i = 1,...,4, then
9(z1,72,73,74,0) < g(Y1,92,93,91,0),  g(x1,22,23,0,24) < g(y1, Y2, Y3, 0, Y1)
This class of mappings has the property in Proposition 1.1, see [1] and Lemma
1.3 in [9], which is necessary for developing our new results.
Proposition 1.1. If g € R and u,v € [0,00) are such that
u < max{g(v,v,u,v + u,0), g(v,v,u,0,v +u), g(v,u,v,v+u,0),g(v,u,v,0,v 4+ u)},
then v < ho.

Now, we are ready to state and prove our main results.

2. Main Results

First, by using the main idea of [1] and [17], we introduce the notion of gen-
eralized a-contractive mapping. In this respect, we emphasize that throughout
this paper we suppose that (X,d) is a metric space, T is a selfmap on X and
a: X x X — [0,00) is a mapping.

We say that the selfmap T of X is a generalized a-contractive mapping when-
ever there exists g € R such that

a(z,y)d(Tz,Ty) < g(d(z,y), d(z, Tx),d(y, Ty),d(z, Ty), d(y, Tx)),
for all z,y € X.
Theorem 2.1. Let (X, d) be a metric space and T a generalized a-contractive and

an a-admissible selfmap on X such that a(xo, Txg) > 1, for some xg € X. Then T
has an approzximate fixed point.

Proof. Fix 1 > r > h and xp € X such that a(zg,Txo) > 1. Define the sequence
{2} by 2p1 = T g for all n > 0.

If x,, = 41, for some n, then we have nothing to prove.

Assume that x,, # x,41 for all n > 0. Since T is a-admissible, it is easy to
check that a(zy,zp4+1) > 1 for all n.

Since

d(z1,x2) = d(Txo, Tz1) < a0, 21)d(Tx0, T21)
< g(d(zo,x1),d(z1, Tx1),d(x0, Tx0), d(20, T1),d(21, T20))
< g(d(.ﬁ(}(), xl)u d(xh -752)7 d(xo, x1)7 d(.’E(), xl) + d(xlv .%2), 0)7

by using Proposition 1.1, we obtain d(z1,x2) < hd(zo, 1) < rd(zo, z1).

Since
d(ze,x3) = d(Tx1,Tz2) < a1, 22)d(Tx1, Tx2)

< g(d(xlﬂx2)7d(x27T$2)7d(m17T$1)7d(x17Tx2>7d(x27Tx1))
< g(d(mth)? d(l‘Q,.%'g,), d(xlu x2)7 d([El,.’Bg) + d(x% .’Eg), 0)7
again by using Proposition 1.1, we obtain

d(x2,x3) < hd(x1,m2) < rd(z1,x2) < r2d(xo,x1).
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By continuing this process, we obtain d(zy,Tp+1) < r"d(x0,21) for all n.
Hence, d(T"xg, T"z0) — 0, and from Lemma 1.1, we conclude that T has the
approximate fixed point property. O

The following example shows that there are generalized a-contractive selfmaps
on non-complete metric spaces, satisfying Theorem 2.1, which have no fixed point
while have approximate fixed points.

Example 2.1. Let X = (0,1), d(x,y) = |r—y| and a(z,y) = 1 whenever 2% = y and
a(z,y) = 2—10 otherwise. Define the selfmap T on X by Tx = 22 for all z € X. Also,
define g € R by g(z1, x2, 23, 24, 5) = %(xg +x3). Then, it is easy to check that T is
generalized a-contractive and a-admissible selfmap on X such that a(xg, Txg) > 1

for xg = %

The following corollaries show us that there are different types of generalized
a-contractive mappings satisfying Theorem 2.1. One can provide many examples
for each type of such mappings. We shall provide some examples for each type of
the maps but one could provide more examples.

Corollary 2.1. Let (X,d) be a complete metric space and T a continuous, gener-
alized a-contractive and a-admissible selfmap on X such that o(xg, Txg) > 1, for
some xg € X. Then T has a fized point.

Proof. By using a similar argument in proof of Theorem 2.1, we obtain
d(Tp, Tpt1) < hd(Tp—1,Tn) < rd(zp—1,z,) < r'd(xg, x1),

for all n. If suppose m < n, then it is easy to see that
m

d(Tm, zn) < (r™ 4+ ™ 4 (g, 1) < lri_rd(xo,ml).

Thus, {x,} is a Cauchy sequence. Since (X, d) is complete, there exists z* € X such
that z,, — x*. Moreover, T is continuous, Tx, — Tz* and so Tz* = z*. O

As we know, Banach proved his contraction principle result in 1922; please,
see [3]. Following this direction, we say that the selfmap T is a-contractive whenever
exists A € (0, 1) such that a(z,y)d(Tx, Ty) < Ad(z,y) for all z,y € X.

Corollary 2.2. Let (X, d) be a metric space and T an a-contractive and o-admissible
selfmap on X such that a(xo, Txg) > 1 for some xyg € X. Then T has the approzi-
mate fized point property.

Proof. Consider g € R given by g(z1,z2,x3,24,25) = Ax1. Then, T is a generalized
a-contractive and a-admissible selfmap on X such that a(zg,Tz¢) > 1, for some
xg € X. Hence by Theorem 2.1, T has the approximate fixed point property. O

In 2011, Haghi, Rezapour and Shahzad proved that some fixed point gener-
alizations are not real generalizations [11]. The following example shows that these
results are real ones.

Example 2.2. Let X = [0,00) and d(z,y) = |z — y|. Define the selfmap 7" on X
by Tx = %1’ for all x € X and put A = % Then, the selfmap T is not contractive.
Let A € [0,1). Define a(z,y) = p for all z,y € X, where pu < %. It is easy to see
that T is a-contractive.
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In 1968, the notion of Kannan-contraction is introduced by Kannan [13]. Now,
we say that the selfmap T on a metric space is a-Kannan mapping whenever there
exists 8 € (0, 1) such that a(z, y)d(Tz, Ty) < B(d(z, Tx)+d(y,Ty)) for all z,y € X.

Corollary 2.3. Let (X,d) be a metric space and T an a-Kannan and o-admissible
selfmap on X such that a(xo,T'zg) > 1, for some xog € X. Then T has the approzi-
mate fixed point property.

Proof. Consider g € R by the formula g(z1, 2, x3, x4, x5) = B(z2+2x3). Then, T is a
generalized a-contractive and a-admissible selfmap on X such that a(zg, T'z¢) > 1
for some zg € X. By Theorem 2.1, T has the approximate fixed point property. [

Corollary 2.4. Let (X,d) be a complete metric space and T a continuous, -
Kannan and a-admissible selfmap on X such that oz, Tzo) > 1, for some xg € X.
Then T has a fixed point.

Proof. Define g € R by g(z1,x2,x3,24,25) = B(x2 + x3). Then, by using Corollary
2.1, it follows that T has a fixed point. O

The following example shows that there exist a-Kannan mappings which are
not Kannan maps.

Example 2.3. Let X = [0,00) and d(z,y) = |x —y|. Define the selfmap T on X by
Ty = %x forall z € X. Put g = i and a(z,y) = p for all x,y € X, where p < %.
Then, it is easy to check that the selfmap T is not Kannan map whereas 1" is an
a-Kannan map.

In 1972, the notion of Chatterjea-contraction is introduced by Chatterjea in [8].
Now, we say that the selfmap T is a-Chatterjea mapping whenever exists 3 € (0, %)
such that a(x,y)d(Tx,Ty) < B(d(z, Ty) + d(y, Tx)) for all z,y € X.

Corollary 2.5. Let (X,d) be a metric space, T an a-Chatterjea and a-admissible
selfmap on X such that a(xo, Txg) > 1, for some xog € X. Then T has the approzi-
mate fixed point property.

Proof. Let g € R given by the formula g(x1,x2, 23, x4, x5) = B(x4 + x5). Then, T is
a generalized a-contractive and a-admissible selfmap on X such that a(zg, Txg) > 1
for some zg € X. Hence by using Theorem 2.1, T' has the approximate fixed point
property. ]

Next corollary generalizes the results in the literature about fixed point of
Chatterjea selfmaps.

Corollary 2.6. Let (X,d) be a complete metric space and T a continuous, -
Chatterjea and c«-admissible selfmap on X such that a(xo,Txg) > 1, for some
xg € X. Then T has a fixed point.

Proof. Define g € R by g(z1,z2,x3,24,25) = (x4 + x5). Then by using Corollary
2.1, T has a fixed point. O

The following example shows that there exist a-Chatterjea mappings which
are not Chatterjea selfmaps.
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Example 2.4. Let X = [0,00) and d(x,y) = |x —y|. Define the selfmap 7" on X by
Tx = %x for all z € X. For each § € (0, %), put x = and y = %ﬁ. Then, it is easy
to see that T is not a Chatterjea mapping. If we put 8 = % and define a(z,y) = p
for all 2,y € X, where i < 3, then one can easily check that T is an a-Chatterjea

80>
selfmap.

In 1972, the notion of Zamfirescu-contraction is introduced by Zamfirescu in
[18]. Now, we say that the selfmap T is a-Zamfirescu mapping whenever exists
B € (0,1) such that a(z,y)d(Tx, Ty) < BMy(z,y) for all x,y € X, where
1 1
Corollary 2.7. Let (X, d) be a metric space and T an a-Zamfirescu and a-admissible
selfmap on X such that a(xg, Txg) > 1, for some xg € X. Then T has the approxi-
mate fixed point property.

My (z,y) = max{d(z,y)

Proof. Define g € R by g(x1,x9,x3,24,25) = [max{x, %[934 + x5], %[xz + z3)}.
Then, T is a generalized a-contractive and a-admissible selfmap on X such that
a(zg, Txo) > 1 for some z¢p € X. Hence by using Theorem 2.1, T" has the approxi-
mate fixed point property. O

Next corollary generalizes the results in the literature about fixed point of
Zamfirescu selfmaps.

Corollary 2.8. Consider (X,d) be a complete metric space and T a continuous,
a-Zamfirescu and a-admissible selfmap on X such that o(xg, Txo) > 1, for some
xg € X. Then T has a fixed point.

Proof. Define g € R by g(z1,x2, x3, x4, x5) = fmax{zy, %[x4—|—:c5], %[xg +x3]}. Then
by using Corollary 2.1, T has a fixed point. O

The following example shows that there exist a-Zamfirescu mappings which
are not Zamfirescu selfmaps.

Example 2.5. Let X = [0,00) and d(z,y) = |x —y|. Define the selfmap 7" on X by
Tx = %x for all x € X. For each 8 € (0,1), put z = 8 and y = %ﬁ. Then, it is easy
to see that T is not a Zamfirescu mapping. If we put g = i and define a(z,y) = p

3 then one can easily check that T is an a-Zamfirescu

for all z,y € X, where p < 1%,

selfmap.

In 1971, the notion of Reich-contraction is introduced by Reich ([15]). Follow-
ing this idea, we say that the selfmap 7" is a-Reich mapping whenever there exists
nonnegative real numbers «, 8,y with a + 8 4+ v < 1 such that

oz, y)d(Tz, Ty) < ad(z,y) + Bd(x, Tx) +vd(y, Ty), Vx,yecX.

Corollary 2.9. Let (X,d) be a metric space and T an a-Reich and a-admissible
selfmap on X such that a(xg, Tzg) > 1, for some xg € X. Then T has an approzi-
mate fized point.

Proof. Define g € R by g(z1,x9,x3,24,25) = axy + o + yx3. Then, T is a gen-
eralized a-contractive and a-admissible selfmap on X such that a(zg,Tz¢) > 1 for
some xg € X. Hence by using Theorem 2.1, T' has the approximate fixed point
property. ]
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Corollary 2.10. Let (X,d) be a complete metric space and T a continuous, c-Reich
and a-admissible selfmap on X such that a(xo, Tzg) > 1, for some o € X. Then
T has a fized point.

Proof. Define g € R by g(x1,x9,x3,24,25) = ax1 + fxa + yx3. Then by using
Corollary 2.1, we get that T has a fixed point. O

The following example shows that there exist a-Reich mappings which are not
Reich selfmaps.

Example 2.6. Let X = [0,00) and d(z,y) = |x — y|. Define the selfmap T on

X by Tx = 2z for all z € X. For each «, 3,7 € (0,1) with « + 5+ v < 1, put

x =0 and y = 1. Then, it is easy to see that T is not a Reich mapping. If we put
1

a = f# =+ = ; and define o(z,y) = p for all z,y € X, where p < %, then one can

easily check that T is an a-Reich selfmap.
In 1972, the notion of Cirié-contraction is introduced by Cirié¢ in [7]. Now, we
say that the selfmap T is a-Ciri¢ mapping whenever there exists A € (0, 1) such that

a(z,y)d(Tz,Ty) < AMr(z,y), Va,y€X,
where Mr(z,y) = max{d(z,y),d(z,Tz),d(y,Ty), [d(z,Ty) + d(y, Tx)]}.

Corollary 2.11. Let (X,d) be a metric space and T an a-Cirié and a-admissible
selfmap on X such that a(xg,T'xg) > 1, for some xog € X. Then T has the approzi-
mate fixed point property.

Proof. Let g € R given by g(x1, z2, x3, x4, 5) = Amax{z1, s, x3, %[a:4+x5]}. Then,
T is a generalized a-contractive and a-admissible selfmap on X with a(xo, Txo) > 1,
for some zg € X. Hence by using Theorem 2.1, T has the approximate fixed point
property. ]

Corollary 2.12. Let (X, d) be a complete metric space and T a continuous, a-Cirié
and a-admissible selfmap on X such that a(xo, Txo) > 1, for some o € X. Then
T has a fixed point.

Proof. Define g € R by g(z1, x2, 3,24, 25) = fmax{z1, 9, T3, %[3:4 + 25]}. Then by
using Corollary 2.1, T" has a fixed point. U

The following example shows that there exist a-Ciri¢ mappings which are not
Ciri¢ selfmaps.

Example 2.7. Let X = [0,00) and d(x,y) = |x —y|. Define the selfmap T on X by
Tx = %m for all x € X. For each A € (0,1), put z = X and y = %)\. Then, it is easy
to see that 7" is not a Ciri¢ mapping. If \ € (0,1) and we define a(z,y) = p for all
x,y € X, where u < %x\, then one can easily check that T is an a-Ciri¢ selfmap.

In 1972, the notion of Bianchini-contraction is introduced by Bianchini in
[6]. Now, we say that the selfmap T is a-Bianchini mapping whenever there exists
h € (0,1) such that a(z,y)d(Tz, Ty) < hmax{d(z,Tx),d(y,Ty)} for all z,y € X.

Corollary 2.13. Let (X, d) be a metric space and T an a-Bianchini and o-admissible
selfmap on X such that a(xg, Txg) > 1, for some xg € X. Then T has the approxi-
mate fixed point property.
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Proof. Define g € R by g(x1,x9,x3, 24, 25) = hmax{xy,x3}. Then, T is a gener-
alized a-contractive and a-admissible selfmap on X such that «a(zg, Txg) > 1 for
some zg € X. Hence by using Theorem 2.1, T has the approximate fixed point
property. O

Next corollary generalizes the results in the literature about fixed point of
Bianchini selfmaps.

Corollary 2.14. Let (X, d) be a complete metric space, T' a continuous, a-Bianchini
and a-admissible selfmap on X such that a(xg, Tzg) > 1 for some zg € X. Then T
has a fized point.

Proof. Define g € R by g(z1, 22,23, x4, x5) = hmax{xz,x3}. Then by using Corol-
lary 2.1, T has a fixed point. O

The following example shows that there exist a-Bianchini mappings which are
not Bianchini selfmaps.

Example 2.8. Let X = [0,00) and d(x,y) = |x —y|. Define the selfmap 7" on X by
Tx = %x for all x € X. For each h € (0,1), put z = h and y = %h. Then, it is easy
to see that T is not a Bianchini mapping. If h = i and we define a(z,y) = p for all

x,y € X, where p < 6%1, then one can easily check that 7" is an a-Bianchini selfmap.

In 1973, the notion of Hardy-Rogers-contraction is introduced by Hardy and
Rogers [12]. Now, we say that the selfmap T is a-Hardy-Rogers mapping whenever
there exist nonnegative real numbers a, b, c, e, f with a + b + ¢ + 2max{e, f} < 1
such that

a(z,y)d(Tz,Ty) < ad(zx,y) + bd(z, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x,Ty)
for all z,y € X.

Corollary 2.15. Let (X,d) be a metric space and T an a-Hardy-Rogers and -
admissible selfmap on X such that oz, Txo) > 1 for some zg € X. Then T has
the approximate fized point property.

Proof. Define g € R by g(x1, x2, x3, x4, x5) = ax1 +bro+crs+exs+ fas. Then, T is
a generalized a-contractive and a-admissible selfmap on X such that a(zg, Txg) > 1
for some xg € X. Hence by using Theorem 2.1, T has the approximate fixed point
property. ]

The following corollary generalizes the results in the literature about fixed
point of Hardy-Rogers selfmaps.

Corollary 2.16. Let (X,d) be a complete metric space and T a continuous, -
Hardy-Rogers and a-admissible selfmap on X such that o(xg,Txo) > 1 for some
x9 € X. Then T has a fixed point.

Proof. Define g € R by g(x1, x2, 23,24, 25) = ax1 + bre + crs + exy + frs. Then by
using Corollary 2.1, T" has a fixed point. t

The following example shows that there exist a-Hardy-Rogers mappings which
are not Hardy-Rogers selfmaps.
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Example 2.9. Let X = [0,00) and d(z,y) = |r — y|. Define the selfmap 7" on
X by Tx = 3x for all x € X. For each nonnegative real numbers a, b, c, e, f with
a+b+c+2max{e, f} < 1, put z = 0 and y = 1. Then, it is easy to see that
T is not a Hardy-Rogers mapping. If we put a = b =c =e = f = £ and define

8
a(z,y) = p for all x,y € X, where p < i, then one can easily check that T is an
a-Hardy-Rogers selfmap.

3. Concluding remarks

In this article, we introduced the concept of generalized a-contractive mapping
and gave results about approximate fixed points and fixed points of mappings on
metric spaces. We proved that these results generalize some classical results in the
literature. The present work follows the direction of previous research articles, such
as Samet, Vetro and Vetro [17], Aleomraninejad, Rezapour and Shahzad [1].
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