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ACCURATE ELEMENT METHOD STRATEGY FOR
FINDING QUASI-ANALYTIC SOLUTIONS OF FIRST-ORDER
PARTIAL DIFFERENTIAL EQUATIONS WITH VARIABLE
COEFFICIENTS

Maty BLUMENFELD'

Integrarea ecuatiilor diferentiale hiperbolice de ordinul unu cu derivate
partiale (PDE) avdnd coeficienti variabili conduce la o ecuatie integrald. Aceasta
ecuatie se integreazd pe un domeniu & divizat in elemente dreptunghiulare prin
inlocuirea functiei-solutie necunoscuta cu o Functie Concordanta (CF) [1,2,3]
riguros adaptatd la ecuatia diferentiald, reprezentatd de un polinom de doud
variabile de grad mare aviand un numar mare de termeni. Prin integrare rezultd pe
fiecare element cdte o solutie cvasi-analitica [1]. Aceasta solutie inlocuitd in
ecuatia diferentiald conduce — pentru elementul analizat — la o functie reziduald
care poate fi sintetizatd prin valori medii patratice (Ry;s). Se compard strategia de
integrare uzual acceptatd (bazatd pe un numdr mare de elemente de forma
apropiatda de pdtrat) cu o stategie total diferitd adaptatd metodei de integrare
dezvoltatd in articol. Aceasta din urmd poate conduce la un numar redus de
elemente dreptunghiulare la care (pentru un exemplu analizat) inaltimea
elementului (H) este de opt ori mai mare decdt baza (B). Raportul optim H/B se
obtine pe baza valorilor medii patratice (Rys) ale functiei reziduale. Rezultatele
foarte bune care se obtin sunt explicate prin legatura care existd intre utilizarea
valorilor Rys si curbele caracteristice ce se pot trasa pe baza coeficientilor variabili
ai ecuatiei diferentiale. Valoarea calculatd a functiei-solutie in punctul diametral
opus originii dimeniului 7 se considerd exactd dacd 7-8 cifre zecimale sunt
rigoros confirmate utilizind cel putin doud Functii Concordante. Astfel de
rezultate se pot obtine cu un numar relativ redus de elemente cu dimensiuni mari
sau foarte mari.

The integration of a first order hyperbolic partial differential equation (PDE)
with variable coefficients leads to an integral equation. This last equation is
integrated by the Accurate Element Method (AEM) on a rectangular domain &—
divided in sub domains (elements) — replacing the unknown solution with a
Concordant Function (CF). The CF is a high degree two variables polynomial with
a great number of terms, rigorously fitted to the PDE. The integration leads to a
quasi-analytic solution [1] valid on a single element. This solution is replaced in the
PDE leading on each element to a residual function that can be synthesized by root
mean square values (Rys). The paper compares the usual integration strategy based
on a great number of square elements with a totally different strategy developed by
AEM. This last strategy leads to a small number of rectangular elements that can
have (for a particular example) the height (H) eight times greater than the base (B).
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The best shape of the elements is found by AEM using the root mean square value
(Rus) of the residual function. The very good (if not accurate) results are explained
by the connection that exists between the AEM solution and the characteristic
curves, which depend on the coefficients of each PDE. The computed value of the

function at the corner opposite to the origin of the domain @(Target Value) is

considered as accurate when 7-8 decimal digits are rigorously verified by using at
least two CFs. Such results can be obtained using a quite small number of elements
with large or very large dimensions.

1. Integration of PDEs using the Accurate Element Method (4EM)
1.1 Global and local coordinates

Suppose a rectangular domain @/ on which a linear hyperbolic Partial
Differential Equation (PDE) has to be integrated. The parameters that describe the
PDE are expressed in a global coordinates system X-T (Fig.1).

The Accurate Element Method (4EM) performs the integration of a PDE
by dividing the domain ¥/ in a convenient number of rectangular elements. The
approach is simplified if each element is analyzed by using a local coordinate
system x-t (Fig.2). If B (Base) and H (Height) are the dimensions of the element,
the coordinates of the four nodes are:

Nodel(x,=0,t;=0);Node2(x,=B,t,=0);Node3(x3=0,t;=H);Node4(xs=B,t.=H) (1.1)
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1.2 PDE in global coordinates
A PDE can be expressed in global coordinates X—7 (Fig.1) as
M(X,T)%—FN(X,T)%—FP(X,T)¢+QG(X,T) =0 (1.2)
where the coefficients” M(X,T), N(X,T), P(X,T) and the free term Qg(X,T) are
two variable polynomials of X and 7.
The case solved here is an initial-boundary value problem with known
initial and boundary conditions represented by:
1. Initial conditions (T=0): ¥Y;(X)=A, +AX+A,X> + A, X +A,X ' +A X +... (1.3)
2. Boundary conditions (X=0): Q;(T)=B,+BT+B,T>+B,T° +B,T* +B,T"... (1.4)

1.3 PDE in local coordinates system
The PDE (1.2) will be expressed in the local system as

M(x,t)?+ N(x,t)%—i— P(x,t)6+Q(x,t) =0 (1.5)
X

where the initial and boundary conditions are given by

Initial conditions (t=0): W(X) =0 + 00X +0,X" + X + 0 X +ox (1.6)
Boundary conditions (x=0):  Q(t) =B, + Bt +B,t* +P;t° +B,t* +Bst ... (1.7)

The integral of (1.5) on the rectangular element ELS (Fig.2) is given by

% % _

jA [M(x,t) NGO P(x,t)¢)dA+jA Q(x,t)dA =0 (1.8)
where the area 4 = B x H. This is an integral equation, the left side integrals
including the unknown two variables function ¢(x,t) or its derivatives. In order to

perform these integrals AEM replaces ¢(x,t) by a Concordant Function [1,2,3].

2. Concordant Functions
2.1 Concordant Function: a complete two variables polynomial

The Concordant Function (CF) — a concept introduced by AEM — is a
complete two variables polynomial, namely it includes all the possible terms that
correspond to a chosen degree: / constant term + 2 linear terms (x,7)+ 3 second
degree terms (x’,xt,’) and so an. The total number of terms NT for a complete
function results from

NT=(G+1)(G+2)/2 2.1)

where G represents the maximum degree of the polynomial function. For instance
a five-degree Concordant Function (G=5) having NT=21 terms, noted as CF5-21,

ZM*N>0
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is given in the local system by’
O(x,1)=C 1 +Cox+Cat+Cyx +Csxt+Cet* +Cox +Cex t+Coxt*+C ot +C 1 x*+C X t+
+C 13X+ C 14xt+C 5t C 16X +Cx tHC s H+Cox E+Cooxt +Co £ (2.2)
2.2 AEM methodology for finding the coefficients of a Concordant Function
The Concordant Function is obtained by AEM using a rigorous procedure
without any special hypothesis or any approximation. For the particular case (2.2)
where 21 coefficients are involved, 21 equations are necessary. The first equation
is represented by the integral equation (1.8), consequently 20 more equations
remain to be established.
2.2.1 Equations based on the initial and boundary conditions
The first kind of equations is those that impose rigorously the initial-
boundary conditions.
a. Initial conditions on the South edge 1-2 (t=0)
On the South edge /-2 (Fig.2) is imposed the initial condition (1.6),
supposed here to be a polynomial. Because in the local coordinates for this edge it
corresponds =0, the CF5-21 given by (2.2) becomes the polynomial

O(x,t=0) = Ci+ Cox + C4x* + Cx° + Cpix*+ Cex° (2.3)

If (2.3) and (1.6) are identified it results 6 coefficients
Ci=0y, ; Cy=a;; Cy=0, ; C=0;; Cy=a,; Cg=0a; (2.4)
b. Boundary conditions on the West edge 1-3 (x=0)
Along the West edge 1-3 (Fig.2) where x=0, the CF (2.2) becomes

0(x=0,t)=C+ Cst+ Cet*+ Ciot*+ Cyst*+ Cyyt® (2.5)

If the boundary conditions are continuous for x=0 and /=0, namely 8, =, ,

the constant C; is already known from (2.4). By identifying (2.5) and the
boundary condition (1.7) it results only 5 coefficients

Ci=B : Ce=By 5 Cu=Bs 5 Cys=Bs ;5 Cy=Ps (2.6)

All the coefficients established until now result directly without any

connection to other information. From the 20 necessary equations, 6+5=11

conditions have been already found. The last 9 equations are rigorously

established by using a special approach introduced by the Accurate Element
Method [1,2,3].

? Three types of Concordant Functions will be used below: CF5-21 (G=5, NT=21 terms), CF7-36
(G=7, NT=36 terms) and CF9-55 (G=9, NT=55 terms)
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2.2.2 Equations based on the PDE (1.5) and its derivatives

The 11 coefficients established in §2.2.1 were obtained by using the
outside information furnished by the initial and boundary condition. No other
information originated from the North and/or East neighboring elements will be
used. No special hypotheses concerning any type of imposed relations between
the coefficients are considered.

The information that is still necessary is taken from inside being
rigorously furnished only by the governing equation (1.5) itself.

A. Equations based on the PDE

It is obvious that the PDE (1.5) has to be valid at any point inside the
integration domain that — in this case — is a rectangular element. The PDE will be
applied in at the nodes 2, 3 and 4 (Fig.2). For instance at the node 2 (x=B,t=0) the
PDE (1.5) becomes

woof %)

All the functions connected to the PDE (1.5) are transferred in local coordinates,
their values at the node 2 being then computed by replacing x=B, t=0. Some terms
of (2.9) can be evaluated directly. Besides Q(B,0) one observe that along the axis
x the function ¢(x,t=0)has to coincide with the initial condition ¥(x) (1.6), so

that (d))x:B t=0 = (W)XZB and alSO (@j = (d\P
’ 0x x=B,t=0

dx
and equating it with the same derivative obtained from (1.2) it results an equation
that includes five unknown coefficients

+ N(B,O)(%) + P(B,O)(¢)X=&t=0 +Q(B,0)=0 (2.9)

x=B,t=0 x=B,t=0>

) . By deriving (2.2) versus ¢
x=B

(@j = C2 + 2BC4 + 3B2C7 + 4B3C11 + 5B4C16 =
x=B,t=0

 N(B,0) dx

Two more equations that use the PDE (1.5) can be written similarly at the
nodes 3 and 4, but not at the node 1 (x=0,t=0), because for this last node it results
from (2.4) and (2.6)

M(0,0) a, + N(0,0)B, + P(0,0) oty +Q(0,0) =0
This equation cannot be accepted, because it represents a condition arbitrarily
imposed to the initial and boundary conditions, whose coefficients do not depend
in any way on the PDE (1.5).

Because the three equations furnished by the PDE are not enough, one can
obtain the six more necessary equations by using the derivatives of (1.5).

S— {M(B,O)(d—q’) +PBOY),_, +QBO)]
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B. Equations based on the first derivatives of the PDE
The first order derivatives of the PDE (1.5) versus x and ¢ are

2 2
@:ML?+8_M@+NQ+6_N@+P@+8_P¢+6_Q:O (210)
ox ox Ox 0x oxot Ox ot ox 0Ox ox
2 2
O(PDE) =M o9 +8_M@ +N6_<21>+6_N@+P@+6_P¢+8_Q=O (2.11)
ot oxot ot ox ot ot ot ot ot ot

If these derivatives are transferred to the nodes 2, 3,4 following a similar approach
as above, one obtains 2 equations/node %3 nodes = 6 equations.

Some of these equations applied in the node 4 are based on the unknown
function ¢ and its derivatives. Because these parameters are involved in the

procedure, AEM is an implicit method [1,5] unconditionally stable.

The complete system includes 21 equations: one from the integral-
equation (1.10), eleven from §2.2.1 and nine from §2.2.2. By solving this system®
it results the function-solution (2.2). This function will be considered a quasi-
analytic solution because it is valid on a single sub-domain (element), not on the
whole domain ¥/ [1].

It remains to find an answer to a fundamental question [11]: how good are
the results furnished by this solution?

3. Start and Target Edges

In §2.2 it was shown that for an initial value problem there are two edges
of the element [/-2 (South) and /-3 (West) (fig.2)] where the initial-boundary
conditions are known. They will be referred as Start Edges. The values of the
function at the nodes /,2,3 that are on the Start Edges, are also known from the
obvious relations

¢ =P(x=0,=0)=Q(x=0,t=0) ; ¢, =P(x=B,t=0) ; ¢, =Q(x=0,t=H) (3.1)

On the contrary, for the other two edges of the element [3-4 (North) and

2-4(East),Fig.2] the function ¢(x,t) that is supposed to verify the PDE is

unknown and its value ¢4(Xs,ts) at the node 4 is also unknown. These two last
edges will be referred as Target Edges and ¢4 as Target Value.

Good Target Edges solutions are very important for the usual case when
the integration is performed on more than one element. Suppose the integration
does not stop at the edge 3-4 (Fig.1), but has to be continued along the 7 axis,
namely on the following element GI2. In this case the North Target Edge 3-4
solution will be used as initial-condition on the South Edge of G12.

4 For higher degree Concordant Functions the number of equations increases, in which case higher
order derivatives of the PDE become necessary
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4. Residual function and its use
4.1 Residual function

Suppose that for a given PDE a function ¢(x,t) that fulfils the boundary
conditions exists and is known. The way to verify if ¢(x, t) represents a solution of
the PDE is to replace it in (1.5) that leads to the function

R(x,t):M(x,t)%+N(x,t)Z—T+P(x,t)$+Q(x,t) (4.1)
If R(x,t) — referred as residual function — is zero the function

&(x,t) represents a particular analytic or exact solution of the PDE. If the residual

function is different from zero, the analysis of its values represents the best way to
appreciate the precision of the numerical result. A very small residual will

indicate (under certain conditions described below) that ¢ (x,t) is a good solution.

An example of the residual variation for a particular case is given in Fig.3 and in
Fig.4 (angle of view opposite to Fig.3).

Residual o Residual
T~ T~
|

S~ El“aligt\Edge ___Start E&g}, -~ " -Start Edge
3 ! | -South, - West -

Target Edge | : .

Start Edge < 0.005 Start Edge
West South

Fig.3 Fig.4

01 0025

4.2 Residuals at the Target Edges
It is necessary to precise that the equation (1.8) where ¢(x,t) is replaced

by a Concordant Function imposes in fact the condition that the integral of the
residual is zero. This includes the possibility that on some portions R(x,z) may be
positive and on other negative. In fact on the Start Edges the residuals R;,(x,t=0)
and R;3(x=0,t) are usually different from zero (see Fig.3), because the CF is
rigorously adapted — due to (2.4) and (2.6) — to the imposed boundary conditions
that do not depend on the PDE. On the contrary due to the integration procedure
the residuals on the Target Edges become close to zero® , as it results from Fig.4.

> The visual impresion that the residual is zero is delusive
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Therefore the verification of the residuals will be performed only on the Target
Edges from where the information is transmitted to the neighboring elements

Target Edge Residual 34: RNorth:R(x,t:t4):(Mgi)+NaaT+P$J +Q(x,t=t,) (4.3)

t=t4

Target Edge Residual 24: REaslzR(x:x4,t):£ gi)+N?1)+P$] +Qx=x,t) (4.4)
x=x4

Both residuals (4.3) and (4.4) are one-dimensional functions, which

simplify the analysis necessary to obtain a numerical criterion that certifies the

quality of the solution. These functions can be represented as graphs that allow

appreciating how close the AEM solution verifies the PDE along 2-4 or 3-4 target

edges. Nevertheless it is better to have — instead of a function — a single numerical
criterion in order to appreciate the accuracy of the computation.

4.3 Root Mean Square Residuals

The residual Ryorh (4.3) can be computed in a number of points NP having
xi(i=1,2,...NP) abscissas. Based on these values one can calculate a mean square
root value given by [1,5]

e
Ryvis,Nortn = NP \/ Z[RNorth (x;,t=ty)]’ (4.5)
il

For the East Target Edge residual (Fig.2, edge 2-4), a similar computation
is performed along the ordinate ¢, for the constant abscissa x=x,

1 i=NP
RMS,East = ﬁ\/ ;[REast (X = X4’ti)]2 (46)
Both (4.5) and (4.6) values may be compared with an allowable residual:
RMS < Rallow (47)

The parameter R0y is @ conventional value that remains to be established.
Some numerical tests solved by the author have shown that a value of Rys smaller
than 10°-10"° indicates a very good result that can be considered as accurate, but
greater values like Rys~ 107-10® can also be accepted [1,5]. On the contrary, a
value like Rys =107 shows that the corresponding solution § (x,t) has to be

rejected and a new computation using modified conditions (shape of the element,
number of elements or/and a different Concordant Function) has to be performed.
The value chosen for R, is obviously disputable.

The Rys approach gives to the user a powerful and global tool to verify the
validity of the whole computation, no matter how many elements or CFs are
involved. It is important to underline that the numerical tests (4.5) and (4.6)
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performed on any element are independent of the results obtained on the previous
elements. Consequently they represent a verification of the whole procedure,
concerned only by the final result, being therefore independent on the

various steps covered in order to obtain § (x,0).

4.4 Accuracy estimation of the Target Value §4(x4,ts)

The Target Value results from the CF (2.2) by replacing x=x4 and t=ts. A
first question has to receive an answer: is the value of @4(x4t4) reliable or not ?
The procedure based on the Rys, namely the relation (4.7), represents a basis for
finding the answer. If both values (North and East) of the Rys are very small and
therefore allowable, one can conclude that the value of ¢4(x4,ts) is reliable and
good, but not how far is from the accurate result. In fact, because (4.1) includes
besides the solution (2.2) also its derivatives, the residual computation does not
verify directly the values of the function.

An answer concerning the precision level of the Target Value ¢s(xa,t4) can
be obtained following different ways, from which we mention:

1. Compute the Target Value ¢4(x4,t4) by using an increasing number of
elements in order to obtain information on the convergence of the results. This can
be done by comparing the values obtained for ¢4(x4,t4) using NE and [NE+A(NE)]
elements, respectively, which allows to obtain an estimated error given by
¢(X4’t4)(NE+ANE) _¢(X4’t4)(NE)

(X4>t4)(NE+ANE) + ¢(X4at4 )(NE)
Obviously, this is only an estimated error because it is related to another
computed value ¢4(X4,t4)NE), 10t to the actual value which is unknown. This error
may be used only as a primary test. Anyway, a lack of convergence can indicate
that the integration strategy used is not adequate.

2. Compare the values of ¢4(x4,t4) obtained by using different Concordant
Functions, for instance CF5-21 and CF7-36. If two Target Values computed using
polynomials with different degrees coincide for instance with 6 decimal digits or
more the result can be considered as good and the Estimated Target Error thus
obtained is reliable.

Estimated Target Error =

(4.8)

5. Integration examples using a standard strategy

The strategy used for the numerical integration extended on a rectangular
mesh is usually based on some trivial ideas:

1. The ratio between the base B and the height H has to be close to unity,
therefore the best element is a square.

2 If no reliable method to verify the errors is available, the computation is
developed by increasing the number of elements. If the results are convergent
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towards a certain value, the computation can be stopped when the relative error
between the values of the (S) and (S+1) steps reaches a level that can be
considered as allowable. This approach leads to the estimated error mentioned
above. In the unusual case when the exact value is known, one can calculate at
each step an actual error.

For all the examples that follow the integration of the PDEs with variable
coefficients will be performed on a rectangular domain 7 extended along X from
X1ei=0 to Xgign,=1 and along T from T'sy.s=0 up t0 Trarger=1.

5.1 Integration of a PDE for which the solution is known
Examplel. Let be the PDE with variable coefficients
(1+3X +4T +2X? +3XT+3T2)@+(4+2X+3T+3X2 +2XT+3T2)@+
X oT (5.1)
+(1+4X +2T +2X* +4XT +2T%) ¢+ Q; (X, T) =0
that has to be integrated with the following initial-boundary conditions:
Initial conditions (T=0): P(X)=2+3X+X? (5.2)
Boundary conditions (X=0): Q(T)=2+2T+3T* (5.3)
A solution of (5.1) ¢(X,T) has been taken at random as a two-dimensional

eleventh-degree complete polynomial with 78 terms. Replaced in (5.1) the solution
(X, T) leads to a free term Qg(X,T) with 705 terms. The Target value obtained

from ¢(X,T)is
d(X=1,T=1)=157 (5.4)
Due to the great number of terms it was considered that reproducing here ¢(X,T)

and Qg(X,T) is not necessary.
The integration will be performed using three different Concordant
Functions: CF5-21, CF7-36 and CF9-55. Because the degree of the solution

¢(X,T)is greater than all the three CFs, the numerical results obtained using a

small number of elements cannot be accurate [2,3]. The integration will be
performed following the standard strategy mentioned above. Because the exact
Target Value is known from (5.4), in this particular case it is possible to calculate
the actual error. From the results given in Table 1 it is useful to observe:

1. For each CF the results are convergent towards the exact value (5.4)
when the number of elements increases.

2. The results improve when the degree of the Concordant Function
increases, if the same number of elements is considered.

3. As it was shown in §2, the Accurate Element Method is an implicit
method, therefore one can use elements having quite large dimensions that can be
considered as improper by other methods. For instance the computation starts for
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each CF with a single element having B=I and H=I. The value obtained in this
case is far from (5.4) for CF5-21, but quite good for CF9-55.

4. Some results obtained using CF9-55 can be considered as accurate. The
values obtained with 9, 16 and especially 25 elements (such as /57.0000009 or
157.0000001) are convincing. The results obtained using CF7-36 with more than
64 elements can also be considered as satisfactory.

Table 1
Elements CF5-21 CF7-36 CF9-55
NE=NCOLx | ¢ x=1,T=1) | Actual | ¢(X=1,T=1) | Actual o (X=1,T=1) | Actual
NROW error error error
1x1=1 164.076 | 4.5x107 | 155.598469 | -8.9x10° | 157.0589174 | 3.7x10™
2x2=4 157.992 | 6.3x107 | 156.963215 | -2.3x10™ | 157.0002136 | 1.4x10°
3%3=9 157.245 | 1.6x107 | 156.996370 | -2.3x10° | 157.0000088 | 5.6x10°
4x4=16 157.084 | 5.3x10" | 156.999326 | -4.2x10° | 157.0000009 | 5.8x107
5x5=25 157.035 | 2.3x10™* | 156.999819 | -1.1x10° | 157.0000001 | 9.9x10"°
6x6=35 157.017 | 1.1x10* | 156.999939 | -3.9x10” * *
7x7=49 157.009 | 6.1x107 | 156.999975 | -1.5x10” * *
8x8=64 157.005 | 3.6x10” | 156.999989 | -7x10* * *
9x9=81 157.003 | 2.3x10” | 156.999994 | -3.4x10° * *
10x10=100 157.002 | 1.5x107 | 156.999997 | -1.8x10° * *

180 Nortn Edde T T 160 East Edgs ‘ ‘

140J—§rge,t\,/a4l,u,e,,,4‘ ,,,,,,,,,, [ 140131991\[31”@,,,4

Another way to verify the accuracy of the results is to represent the graphs
of the North Edge Target Values for T=1 (Fig.5) and East Edge Target Values for
X=1 (Fig.6). Both graphs correspond to the case 4x4=16 elements (CF7-36,
Table 1) and show a perfect match between the AEM results and the exact values.

Nevertheless, as it will result from the next example, no hasty conclusion
has to be retained concerning the validity of the computation strategy used in this
case.
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5.2 Integration of a PDE whose solution is not known
Example2. The PDE with variable coefficients
@+(4+2X+3X2)@+¢—
oX oT (5.5)
—(2.5+19X + 22T +13X? + 28XT +18T? + 6X° + 2X*T +4XT* +3T%)=0
will be integrated on & using CF7-36, with the following initial-boundary
conditions taken at random:
Initial conditions (T=0): W, (X)=1-0.3X+0.1X* +0.2X° +0.03X* +0.01X° (5.6)
Boundary conditions (X=0): Qg (T)=1-02T+0.3T> ~T° +0.03T* +0.01T°  (5.7)
The strategy of integration for this PDE — that has as single variable
coefficient (4+2X+X?) — is the same used in the previous example. The
computation starts also with a single square element (Table 2, Test 1). In order to
maintain square elements during the further computation, the number of columns
(NCOL) and rows (NROW) are multiplied simultaneously by the same number.

Table 2
Test | NE=ENCOLx | ¢ (x=1,T=1) | Estim. | North RMS | East RMS Ratio
NROW error residual residual | North/East
@))] 2 3 “4) &) (©)] )
1 1x1=1 9.2710 * 3.1x10° 8.4x107 37
2 2x2=4 9.1849 4.7x107 1.7x10 2.8x107° 611
3 3x3=9 8.7845 22x107 | 1.1x1072 1x10° 1074
4 4x4=16 8.5328 -1.4x107% | 3.8x107 1.4x10° 2694
5 5x5=25 8.4135 -7%107° 2.8x107 4.8x10° 575
6 6x6=35 8.6173 1.2x10 1.1x107 1.2x10° 905
7 7x7=49 9.1462 3x1072 9.3x10° 2.1x10° 446
8 8x8=64 8.6249 2.9x107% | 5.1x107 5.3x107° 950
9 9x9=81 6.9851 -1x10™" 6.1x107 1.1x10* 538
10 | 10x10=100 9.3847 15107 | 2.1x107! 1.9x10* 1144
9.5 ( RMS-North) / (RMS-East) i i
-\I;a{get ~— I (L:oga(:'I‘thmi‘b sca!e)as: i i i :*
a ueg \ /\ L_od__%_
LI xr ¥ )/ﬁ\ o /T.?
8.5 A i
Accurate Target Value=8.6565 (*) \
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The results obtained in this case following the strategy used for the
previous example are disappointing, because the computed Target Values (Table
2, column 3) are erratic and non-convergent. This erratic behavior is also
confirmed by the Estimated Target Error (4.8) given in column 4 and by the
values of the North and East RMS residuals (Columns 5 and 6). From the graph
given in Fig.7 (where the accurate Target Value obtained following a different
strategy is also indicated) it results clearly that no credible Target Value
¢ (X=1,T=1) can be retained. The standard strategy which recommends the

increase of the number of elements has failed.

6. The integration strategy of the Accurate Element Method
6.1 A deeper analysis concerning the integration of a very simple PDE

The integration strategy that will be further used is based on a more
flexible approach made possible by the information concerning the North and
East residuals, furnished by the Accurate Element Method. Some important
aspects have resulted in [1] from the simplest PDE (S—i+2§—$ =0) that has been
integrated on the large rectangular domain limited by X=1, T=10. The results
represented by the Target Values are reproduced here in Table 3. Because in this
case the exact Target Value is known, the analysis and the conclusions are
reliable. The strategy used for the integration was different from that used here in
§5 being performed on a single column, increasing at each test the number of
elements. This procedure leads to a modified shape of the elements. In fact, the
ratio between the height H and the base B starts for the first element with H/B=10,
becoming for the last element ten times smaller, namely H/B=1. The North and
East residuals show an improvement when the number of elements increases from
1to 4. For NE=5 it results an impressive improvement because both residuals
drop to 707" while the actual error becomes 1.4x707". This indicates that the
accurate solution has been reached. If the number of elements is further
increased, the results remain good but with some greater errors.

Table 3
Exact Target Value ¢rp = 749.2
NE | BxH Target Value Residuals Actual
ors(X=1,T=10) RMS-North | RMS-East | Ratio N/E error
M1 @ 3 (€] &) ©) (@)
1 1x10 | 748.0424382716078 | 7.6x10* 3.9x107"! 1/513 -1.5x107
2 1x5 | 747.7472991695568 | 7.7x10™ 1.1x107" 1/143 -1.9x10°
3 | 1x3.33 | 749.2102287345520 | 7.3x107 1.2x10° 1/16.4 1.4x107
4 | 1x2.5 | 749.2011443978998 | 1.3x10* 4x10™ 1/3.1 1.5x10°
5 1x2 | 749.2000000000011 | 3x10™" 3.9x107" ~1 1.4x107"°
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6 | 1x1.66 | 749.2000001699947 1x107 4x10°® 2.5 2.2x1071°
7 | 1x1.43 | 749.2000000113434 4x107 7x1071° 5.7 1.5x1071
8 | 1x1.25 | 749.1999999939001 | 1.4x10” 1.1x1071° 12.7 -8.1x1072
9 | Ix1.11 | 749.1999999992441 | 1.5x10” 5.5x1071 27.2 -1x107"
10 | 1x1 | 749.2000000104398 | 9.1x107"° | 1.2x10™" 75.8 1.4x10M

This analysis can represent a basis for a modified strategy that will be

applied in the following examples. The first idea which has to be retained is that
very good results can be obtained by using elements whose shapes are
different from a square; the first problem to be solved is to find the best possible
shape. The second idea is that increasing the number of elements does not lead
always to better values; the problem that results is to find the number of elements
beyond which the values worsens. The Accurate Element Method can give
answers to both problems.
6.2 A strategy to find the best possible shape. As it results from 7able 3 the best
value was not obtained for the maximum of elements (NE=10), but for a smaller
number (NE=5). For NE=10 the element is square, while for NE=5 is rectangular
with H/B=2. Or, as it results from the columns (4) and (5), this last element is the
only one for which the North and East residuals are nearly equal. The
equality of the two residuals can be synthesized by their ratio

Ratio N/E=( RMSnort) / (RMSkgas) (6.1)

This parameter that was not used in [1] is added here in Table 3, column (6). The
variation of the ratio (6.1) using a logarithmic scale is given in Fig.8.

Obtaining the best possible shape means in fact to find the ratio B/H (or
H/B) for which the Ratio E/N is EQUAL to the unity. To obtain exactly this
value is seldom possible; therefore the above condition may be reasonably
changed in “find the ratio B/H (or H/B) for which the Ratio N/E is CLOSE to
the unity”.
6.3 A strategy to find a good result. When the procedure to find the best shape
has been successfully accomplished and as a consequence the shape of the
elements has been established, one can appreciate the accuracy of the result from
the RMS of the North and East residuals. If this value is considered as satisfactory
[according to (4.7)] the computation may be stopped. If not, the number of
columns and rows of the mesh will be increased in the same amount, in order to
maintain the shape for which the Ratio N/E was close to the unity. Maintain the
shape does not mean compulsory that the ratio (6.1) remains unmodified.
Therefore it is necessary to verify if (6.1) is close to the unity; if not, one has to
modify the number of columns or rows for finding the best shape for the new
configuration.
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This strategy may sometimes be more complex because — if the results are
unsatisfactory — the full procedure can also include the decision to change the
Concordant Function. Nevertheless all these requirements may be easily
implemented in a program that finds a good solution without any intervention of
the user. This “automatic” search (as it was programmed by the author) does not
give always the best results.

The examples that follow intend to illustrate this strategy.

Example 3. The Example 2 will be solved using CF7-36 starting as in Table 2 with
a single element. Because the ratio Rationg=37 (Table 4,Column 6), one choose
for the second test two rows for which Rationg=1599 that is worse than 7est 1.
This shows that the decision to increase the number of rows was wrong, so that
for Test 3 one increases the number of columns (NCOL=2), while NROW=1. This
leads to Ration/g=27, which is better than for the Test 1. If the number of columns
is further increased, one obtains for Test 6 a Ration/g near to unity, so that the best
possible shape corresponding to a single column has been reached. The value of
the Rys=1.2x10" can be considered a good result, the corresponding target value
being

¢ (X=1,T=1)=8.656505067110762 (6.2)

If the user is not satisfied with the Ry obtained for the Test 6, the
computation can continue by doubling succesivaly the number of columns and
rows (Tests 8 and 9). For the Test 9 it results Rationr=1/2.6, which is a good
value and the mean Rys=2.55x107". The Target Value corresponding to 7est 9

¢ (X=1,T=1)= 8.656504813177039 (6.3)

can be considered as accurate. This value was used for the graph given in Fig.7.

Table 4
Test | NE=NCOLx Target Value ResidualMS | ResidualMS Ratio Relative
NROW o (X=1,T=1) North East North/East |  Error
Q) 2 3 4 (©)] ©) )
1 1x1=1 9.271063416732901 | 3.1x107 8.4x10° 37 7.1x107
2 1x2=2 9.266059718797713 | 4.6x107 2.9x10° 1599 7%107
3 2x1=2 8.972009233893001 1.1x107 4.1x107 27 3.6x107
4 4x1=4 8.665058847812112 | 2.2x107 7.1x107 31 9.9x10™
5 6x1=6 8.656504565787088 | 1.6x10” 4x10° 12.5 -2.8x10°
6 7x1=7 8.656505067110762 | 1.3x10” 1.1x10” 1/1.2 2.9x10°
7 8x1=8 8.656504868028492 | 3.8x10°"° 1.7x107 1/4.5 6.3x10”
8 14x2=28 | 8.656504814504606 | 7.4x10" 2.8x10°" 1/3.8 1.5x10°1°
9 28x4=112 | 8.656504813177039 | 1.4x107" 3.7x107° 1/2.6 *

Remarks. 1. The error of the value (6.2) if compared to (6.3) is 2.9x10®. For a
usual computation such a precision may not be necessary, in which case the Tests
8 and 9 are useless.
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2. Unlike the erratic values obtained using a wrong strategy in Example 2, the
values given in Table 4 are strictly convergent when the number of elements
increases.

Example 4. The PDE with variable coefficients

(5+3T+3T2)@+@+(2+3X+5XT)¢—
X T

—(2.5+19X + 22T +13X* + 28XT + 18T + 6X° + 2X*T + 4XT? +3T°)=0

(6.4)

will be integrated on ¥ the initial-boundary conditions being (2.2) and (2.3).

The integration is performed using successively CF5-21, CF7-36 and CF9-55.
The main results obtained using the strategy followed in Example 3 are given in
Table 5. Some remarks concerning the results have to be mentioned:

1. In this case the ratio B/H>>1, being therefore reversed as compared to
Example 3, where B/H<<I.

Table 5
Test | NE=ENCOLx | B Target Value ResidMS | ResidMS Ratio
NROW H o (X=1,T=1) North East | North/East

@ 2 3 4 Q) (O] 0

CF5-21
1 1x7=7 7 | 5.460095975254646 | 4x10* 1.4x10™ 2.85
2 2x12=24 6 | 5.454168955719426 | 1x10° 3.6x10° 1/3.6
3 3x18=54 6 | 5.453791761125538 | 1.2x10° | 1.4x10° /1.2
4 4x25=100 | 6.25 | 5.453725908386619 | 2.9x107 | 2.7x107 1.07
5 5x32=160 | 6.4 | 5.453704642743616 | 9.8x10° | 7.4x107® 1.32
6 9x65=585 | 7.2 | 5.453690222722832 | 6x10~ 7.2x107 1/1.2

CF7-36
7 1x5=5 5 | 5.458669407203526 | 1.3x10° | 4.2x107° 1/3.2
8 2x15=30 7.5 | 5.453691682364898 | 8.7x10° | 8.7x10” ~1
9 3x22=66 7.3 | 5.453688986594051 | 2.6x10° | 1.8x10” 1.44
10 | 5x32=160 | 6.4 | 5.453688728692493 | 2.35x10™"" | 2.39x107"° 1.02
11 6x40=240 | 6.7 | 5.453688724546589 | 8.4x10"" | 6.8x10" 1.23
12 | 10x64=640 | 6.4 | 5.453688721408778 | 4.6x10"2 | 4.1x107"2 1.12

CF9-55
13 1x7=7 7 | 5.453703569440119 | 1.5x107 7x107 1/4.7
14 2x14=28 7 | 5.453688711719918 | 4.2x107 | 2.3x10"° 1.82
15 3%20=60 6.7 | 5.453688723145416 | 2.4x10" | 1.3x10"" 1.85

2. If the values obtained using CF5-21 and CF7-36 are compared it results
that the second CF leads to similar results with a smaller number of elements. For
instance the Rys~ 107 is reached by CF5-21 with 585 elements (Zest 6), while for
similar result CF7-36 needs only 66 elements (7est 9). The same happens for the
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Rus ~ 107" that is reached by CF7-36 with 240 elements (Test 11), while a similar
result is obtained by CF9-55 with only 60 elements (Test 15).

3. While the goal of the Example 3 was to describe and apply the
integration strategy developed by the Accurate Element Method, from this
example results another test that intends to verify the precision of the Target
Value: compute the estimated error by comparing the results obtained with
different Concordant Functions. For instance one can compare the following tests
that have similar residuals (Rys :10'“):

Tests 11 (CF7-21): 0 (X=1,T=1) = 5.453688724546589
Test 15 (CF9-55): ¢ (X=1,T=1) = 5.453688723145416

From the comparison it results:
a. The two values coincide with 9 digits, so that one can considered
¢ (X=1,T=1) = 5.45368872 as reliable.
b. The relative error between the two values is 1.3x107™"°.
This comparison that leads (for similar residuals) to close results using
Concordant Functions with different degrees represents a solid confirmation
of the Accurate Element Method as a whole.

7. The characteristic curves

The strategy for finding the best shape of the element can be
explained by the characteristic curves of the PDE (5.5) that are obtained by
integrating the ordinary differential equation [1,7,8]

dT _ N(X,T) _4+2X+3X°
dX M(X,T) 1
The integral of (7.1) is

=4+2X+3X? (7.1)

T(X)=K+4X+X*+X° (7.2)
where K is an integration constant. In fact (7.2) represents a bunch of parallel
curves, corresponding to different values of K. Suppose an element whose origin
is in global coordinates (Fig.9) at Node I (Xs, Ts). The characteristic curve
starting from Node I results from the condition that to X= Xg has to correspond
T= TS

T =K+4X;+Xe+X; = K=-(dX+X;+X3-Ty) (7.3)
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Suppose the particular case represented in Fig.9b where the curve (7.2)
that starts from the node / — marked with xxxx — intersects the Target Edge 3-4 in
the node 4, dividing the element in two sub-domains. In this case the information
furnished by the initial condition (Input South) is used to perform the integration
only on the south-east sub-domain, while the boundary condition (Input West) is
used only on the north-west sub-domain. Because the two sub-domains are
separated by the charactestic curve /-4 there is no information interference
between them. Consequently, the Concordant Function receives correctly on
each sub-domain the information furnished by the initial and boundary conditions,
respectively. The information resulted from the integration is therefore also
correctly transmited to the North and East output edges. In this case the mean
square residuals Ry that correspond to these two edges — both reflecting the same
Concordant Function and the same PDE — are correctly evaluated and therefore
have to be nearly equal. This has been observed for the case NE=5 in Table 3
and also in Fig.8.

Suppose now the case represented in Fig.9a, where the characteristic curve
intersects the Target Edge 3-4 at the abscissa Xoyr . In this case the information
received from the West edge (adapted by the Concordant Function to the
governing PDE due to the conditions developed in §2.3) is transmitted to the
neighboring North element through a portion between Node 3 and Xoyr. The
information received from the South Edge is less fortunate, because it is
transmitted simultaneously to the East side element but also to the North side
element through the segment between Xoyr and Node 4. As a consequence, the
North side element will receive distorted information, composed not only by the
correct output between Node 3 and Xour, but also by the unexpected (and
incorrect) information furnished between Xoyr and Node 4 that arrives from the
initial (South Edge) condition. On the contrary the East side element will receive
correct information furnished only by the initial (South) condition. It results that
the East side output is correct, while the North side output is incorrect. This
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is reflected, numerically, in a Ratio N/E far from unity. This ratio tends to
increase (or diminish) when the position of Xpyr is closer to the node 3 (Fig.2).

On the contrary, in the third case reflected by Fig.9c, the start curve (xxxx)
intersects the Target Edge 2-4 in a point that has the ordinate Toyr. This time the
correct information is furnished by the North edge; on the East edge the
output is distorted being composed by the (correct) South input information to
which the some West input information is forcibly added.

8. Conclusions

The Accurate Element Method based on the strategy “best shape-tested
Target value” leads towards very good (if not accurate) Target Values. But more
important is the possibility offered to the user to follow “with opened eyes” the
integration procedure, namely to choose/change the type of the CF used, to know
the level of the possible errors and to decide — based on the requirements of each
specific case — when the computation can be stopped. Besides the Target Value, it
is trivial to obtain any type of graphs, which can be easily drowned because for
each element is available a quasi-analytic solution.

Some further developments of the method have already been mentioned in [1].

REFERENCES

[1]. M. Blumenfeld, Quasi-analytic solutions of first-order Partial Differential Equations using the
Accurate Element Method, University Polytehnica Bucharest Sci.Bull., Series A, Vol. 72,
Iss.2, 2010, pp.31-50.

[2]. M. Blumenfeld, The Accurate Element Method for solving Ordinary Differential Equations,
Editura JIF, Bucharest 2005 (in English).

[3]. M. Blumenfeld, A New Method for Accurate Solving of Ordinary Differential Equations,
Editura Tehnica, Bucharest 2001 (in English).

[4]. M. Blumenfeld, Accurate Element Method strategy for the integration of first order Ordinary
Differential Equations, University Polytehnica Bucharest Sci.Bull., Series A, Vol. 69, No.2,
2007

[5]. M. Blumenfeld, Verification of the quasi-analytic solutions of Ordinary Differential Equations
using the Accurate Element Method, University Polytehnica Bucharest Sci.Bull., Series A,
Vol. 71, ISS 2/2009.

[6]. M. Blumenfeld, P.Cizmas, The Accurate Element Method: A new paradigm for numerical
solution of Ordinary Differential Equations, Proceedings of Romanian Academy, 4(3),
2003.

[7]. C. Berbente, S.Mitran, S.Zancu, Metode Numerice (Numerical Methods), Editura Tehnica,
Bucharest, 1997.

[8]. S. Danaila, C. Berbente, Metode Numerice in Dinamica Fluidelor (Numerical Methods in
Fluid Dynamics), Editura Academiei Romane, Bucharest, 2003



78 Maty Blumenfeld

[9]. P.V.O’Neil, Beginning Partial Differential Equations, John Wiley & Sonns, New-York, 1999.
[10]. S.C.Chapra, R.P.Canale, Numerical Methods for Engineers, McGraw-Hill, 2002.
[11]. G.W.Collins II, Fundamental Numerical Methods and Data Analysis, Internet Edition, 2003.



