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ACCURATE ELEMENT METHOD STRATEGY FOR 
FINDING QUASI-ANALYTIC SOLUTIONS OF FIRST-ORDER 

PARTIAL DIFFERENTIAL EQUATIONS WITH VARIABLE 
COEFFICIENTS 

 
Maty BLUMENFELD1 

Integrarea ecuaţiilor diferenţiale hiperbolice de ordinul unu cu derivate 
parţiale (PDE) având coeficienţi variabili conduce la o ecuaţie integrală. Aceasta 
ecuaţie se integrează pe un domeniu D  divizat în elemente dreptunghiulare prin 
înlocuirea funcţiei-soluţie necunoscută cu o Funcţie Concordantă (CF) [1,2,3] 
riguros adaptată la ecuaţia diferenţială, reprezentată de un polinom de două 
variabile de grad mare având un număr mare de termeni. Prin integrare rezultă pe 
fiecare element câte o soluţie cvasi-analitică [1]. Această soluţie înlocuită în 
ecuaţia diferenţială conduce – pentru elementul analizat – la o funcţie reziduală 
care poate fi sintetizată prin valori medii patratice (RMS). Se compară strategia de 
integrare uzual acceptată (bazată pe un număr mare de elemente de formă 
apropiată de pătrat) cu o stategie total diferită adaptată metodei de integrare 
dezvoltată în articol. Aceasta din urmă poate conduce la un număr redus de 
elemente dreptunghiulare la care (pentru un exemplu analizat) înalţimea 
elementului (H) este de opt ori mai mare decât baza (B). Raportul optim H/B se 
obţine pe baza valorilor medii patratice (RMS) ale funcţiei reziduale. Rezultatele 
foarte bune care se obţin sunt explicate prin legătura care există între utilizarea 
valorilor RMS şi curbele caracteristice ce se pot trasa pe baza coeficienţilor variabili 
ai ecuaţiei diferenţiale. Valoarea calculată a funcţiei-soluţie în punctul diametral 
opus originii dimeniului D se consideră exactă dacă 7-8 cifre zecimale sunt 
rigoros confirmate utilizând cel puţin două Funcţii Concordante. Astfel de 
rezultate se pot obţine cu un număr relativ redus de elemente cu dimensiuni mari 
sau foarte mari.  

 
The integration of a first order hyperbolic partial differential equation (PDE) 

with variable coefficients leads to an integral equation. This last equation is 
integrated by the Accurate Element Method (AEM) on a rectangular domain D – 
divided in sub domains (elements) – replacing the unknown solution with a 
Concordant Function (CF). The CF is a high degree two variables polynomial with 
a great number of terms, rigorously fitted to the PDE. The integration leads to a 
quasi-analytic solution [1] valid on a single element. This solution is replaced in the 
PDE leading on each element to a residual function that can be synthesized by root 
mean square values (RMS). The paper compares the usual integration strategy based 
on a great number of square elements with a totally different strategy developed by 
AEM. This last strategy leads to a small number of rectangular elements that can 
have (for a particular example) the height (H) eight times greater than the base (B). 
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The best shape of the elements is found by AEM using the root mean square value 
(RMS) of the residual function. The very good (if not accurate) results are explained 
by the connection that exists between the AEM solution and the characteristic 
curves, which depend on the coefficients of each PDE. The computed value of the 
function at the corner opposite to the origin of the domain D (Target Value) is 
considered as accurate when 7-8 decimal digits are rigorously verified by using at 
least two CFs. Such results can be obtained using a quite small number of elements 
with large or very large dimensions. 

 
1. Integration of PDEs using the Accurate Element Method (AEM) 
1.1 Global and local coordinates 
 Suppose a rectangular domain D on which a linear hyperbolic Partial 
Differential Equation (PDE) has to be integrated. The parameters that describe the 
PDE are expressed in a global coordinates system X–T (Fig.1). 

The Accurate Element Method (AEM) performs the integration of a PDE 
by dividing the domain D in a convenient number of rectangular elements. The 
approach is simplified if each element is analyzed by using a local coordinate 
system x-t (Fig.2). If B (Base) and H (Height) are the dimensions of the element, 
the coordinates of the four nodes are: 
 Node1(x1=0,t1=0);Node2(x2=B,t2=0);Node3(x3=0,t3=H);Node4(x4=B,t4=H)  (1.1) 

 

 
                               Fig.1                      Fig.2 
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1.2 PDE in global coordinates 
 A PDE can be expressed in global coordinates X–T (Fig.1) as 

0)T,X(Q)T,X(P
T

)T,X(N
X

)T,X(M G =+φ+
∂
φ∂

+
∂
φ∂   (1.2) 

where the coefficients2 M(X,T), N(X,T), P(X,T) and the free term QG(X,T) are 
two variable polynomials of X and T.  

The case solved here is an initial-boundary value problem with known 
initial and boundary conditions represented by: 
1. Initial conditions (T=0): ...XAXAXAXAXAA)X( 5

5
4

4
3

3
2

210G ++++++=Ψ    (1.3) 
2. Boundary conditions (X=0):   ...TBTBTBTBTBB)T( 5

5
4

4
3

3
2

210G +++++=Ω     (1.4) 
 
1.3 PDE in local coordinates system 

The PDE (1.2) will be expressed in the local system as  
 

0)t,x(Q)t,x(P
t

)t,x(N
x

)t,x(M =+φ+
∂
φ∂

+
∂
φ∂            (1.5) 

where the initial and boundary conditions are given by 
Initial conditions (t=0):        ...xxxxx)x( 5

5
4

4
3

3
2

210 α+α+α+α+α+α=Ψ         (1.6) 
Boundary conditions (x=0):      ...ttttt)t( 5

5
4

4
3

3
2

210 β+β+β+β+β+β=Ω            (1.7) 
The integral of (1.5) on the rectangular element ELS (Fig.2) is given by 
 

0dA)t,x(QdA)t,x(P
t

)t,x(N
x

)t,x(M
A A

=+⎟
⎠
⎞

⎜
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∫ ∫   (1.8) 

where the area  A = B × H. This is an integral equation, the left side integrals 
including the unknown two variables function )t,x(φ or its derivatives. In order to 
perform these integrals AEM replaces )t,x(φ  by a Concordant Function [1,2,3]. 
 
2. Concordant Functions 
2.1 Concordant Function: a complete two variables polynomial 

The Concordant Function (CF) – a concept introduced by AEM – is a 
complete two variables polynomial, namely it includes all the possible terms that 
correspond to a chosen degree: 1 constant term + 2 linear terms (x,t)+ 3 second 
degree terms (x2,xt,t2) and so an. The total number of terms NT for a complete 
function results from        

( )( ) 2/2G1GNT ++=         (2.1) 
where G represents the maximum degree of the polynomial function. For instance 
a five-degree Concordant Function (G=5) having NT=21 terms, noted as CF5-21, 
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is given in the local system by3 
φ(x,t)=C1+C2x+C3t+C4x2+C5xt+C6t2+C7x3+C8x2t+C9xt2+C10t3+C11x4+C12x3t+ 

+C13x2t2+C14xt3+C15t4+C16x5+C17x4t+C18x3t2+C19x2t3+C20xt4+C21t5             (2.2) 
2.2 AEM methodology for finding the coefficients of a Concordant Function 

The Concordant Function is obtained by AEM using a rigorous procedure 
without any special hypothesis or any approximation. For the particular case (2.2) 
where 21 coefficients are involved, 21 equations are necessary. The first equation 
is represented by the integral equation (1.8), consequently 20 more equations 
remain to be established. 
2.2.1 Equations based on the initial and boundary conditions 
 The first kind of equations is those that impose rigorously the initial-
boundary conditions. 
a. Initial conditions on the South edge 1-2 (t=0) 
 On the South edge 1-2 (Fig.2) is imposed the initial condition (1.6), 
supposed here to be a polynomial. Because in the local coordinates for this edge it 
corresponds t=0, the CF5-21 given by (2.2) becomes the polynomial 
 

φ(x,t=0) = C1+ C2x + C4x2 + C7x3 + C11x4+ C16x5      (2.3) 
 

If (2.3) and (1.6) are identified it results 6 coefficients 
51641137241201 C;C;C;C;C;C α=α=α=α=α=α=    (2.4) 

b. Boundary conditions on the West edge 1-3 (x=0) 
 Along the West edge 1-3 (Fig.2) where x=0, the CF (2.2) becomes 
 

φ(x=0,t)=C1+ C3t+ C6t2+ C10t3+ C15t4+ C21t5     (2.5) 
 

If the boundary conditions are continuous for x=0 and t=0, namely 00 α=β , 
the constant C1 is already known from (2.4). By identifying (2.5) and the 
boundary condition (1.7) it results only 5 coefficients 

6215154102613 C;C;C;C;C β=β=β=β=β=   (2.6) 
All the coefficients established until now result directly without any 

connection to other information. From the 20 necessary equations, 6+5=11 
conditions have been already found. The last 9 equations are rigorously 
established by using a special approach introduced by the Accurate Element 
Method [1,2,3]. 
 
 
 
                                                           
3 Three types of Concordant Functions will be used below: CF5-21 (G=5, NT=21 terms), CF7-36 
(G=7, NT=36 terms) and CF9-55 (G=9, NT=55 terms) 
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2.2.2 Equations based on the PDE (1.5) and its derivatives 
 
 The 11 coefficients established in §2.2.1 were obtained by using the 
outside information furnished by the initial and boundary condition. No other 
information originated from the North and/or East neighboring elements will be 
used. No special hypotheses concerning any type of imposed relations between 
the coefficients are considered. 

The information that is still necessary is taken from inside being 
rigorously furnished only by the governing equation (1.5) itself. 
A. Equations based on the PDE 
 It is obvious that the PDE (1.5) has to be valid at any point inside the 
integration domain that – in this case – is a rectangular element. The PDE will be 
applied in at the nodes 2, 3 and 4 (Fig.2). For instance at the node 2 (x=B,t=0) the 
PDE (1.5) becomes 

( ) 0)0,B(Q)0,B(P
t

)0,B(N
x

)0,B(M
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 (2.9) 

All the functions connected to the PDE (1.5) are transferred in local coordinates, 
their values at the node 2 being then computed by replacing x=B, t=0. Some terms 
of (2.9) can be evaluated directly. Besides Q(B,0) one observe that along the axis 
x the function )0t,x( =φ has to coincide with the initial condition )x(Ψ  (1.6), so 

that ( ) ( )
Bx0t,Bx ===

ψ=φ and also 
Bx0t,Bx

dx
d

x
===

⎟
⎠
⎞

⎜
⎝
⎛ Ψ

=⎟
⎠
⎞

⎜
⎝
⎛
∂
φ∂ . By deriving (2.2) versus t 

and equating it with the same derivative obtained from (1.2) it results an equation 
that includes five unknown coefficients 
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Two more equations that use the PDE (1.5) can be written similarly at the 
nodes 3 and 4, but not at the node 1 (x=0,t=0), because for this last node it results 
from (2.4) and (2.6) 

0)0,0(Q)0,0(P)0,0(N)0,0(M 011 =+α+β+α  
This equation cannot be accepted, because it represents a condition arbitrarily 
imposed to the initial and boundary conditions, whose coefficients do not depend 
in any way on the PDE (1.5).  
 Because the three equations furnished by the PDE are not enough, one can 
obtain the six more necessary equations by using the derivatives of (1.5). 
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B. Equations based on the first derivatives of the PDE 
 The first order derivatives of the PDE (1.5) versus x and t are 

0
x
Q

x
P

x
P

tx
N

tx
N

xx
M

x
M

x
)PDE( 2

2

2

=
∂
∂

+φ
∂
∂

+
∂
φ∂

+
∂
φ∂

∂
∂

+
∂∂
φ∂

+
∂
φ∂

∂
∂

+
∂
φ∂

=
∂

∂  (2.10) 

0
t
Q

t
P

t
P

tt
N

t
N

xt
M

tx
M

t
)PDE(

2

22

=
∂
∂

+φ
∂
∂

+
∂
φ∂

+
∂
φ∂

∂
∂

+
∂
φ∂

+
∂
φ∂

∂
∂

+
∂∂
φ∂

=
∂

∂  (2.11) 

If these derivatives are transferred to the nodes 2,3,4 following a similar approach 
as above, one obtains 2 equations/node×3 nodes = 6 equations. 

Some of these equations applied in the node 4 are based on the unknown 
function φ  and its derivatives. Because these parameters are involved in the 
procedure, AEM is an implicit method [1,5] unconditionally stable. 

The complete system includes 21 equations: one from the integral-
equation (1.10), eleven from §2.2.1 and nine from §2.2.2. By solving this system4 
it results the function-solution (2.2). This function will be considered a quasi-
analytic solution because it is valid on a single sub-domain (element), not on the 
whole domain D [1]. 

It remains to find an answer to a fundamental question [11]: how good are 
the results furnished by this solution? 
 
3. Start and Target Edges 
 

In §2.2 it was shown that for an initial value problem there are two edges 
of the element [1-2 (South) and 1-3 (West) (fig.2)] where the initial-boundary 
conditions are known. They will be referred as Start Edges. The values of the 
function at the nodes 1,2,3  that are on the Start Edges,  are also known from the 
obvious relations 

   )Ht,0x(;)0t,Bx(;)0t,0x()0t,0x( 321 ==Ω=φ==Ψ=φ==Ω===Ψ=φ      (3.1) 
On  the  contrary, for  the other  two edges of the element [3-4 (North) and  

2-4(East),Fig.2] the function )t,x(~
φ  that is supposed to verify the PDE is 

unknown and its value φ4(x4,t4) at the node 4 is also unknown. These two last 
edges will be referred as Target Edges and φ4 as Target Value. 

Good Target Edges solutions are very important for the usual case when 
the integration is performed on more than one element. Suppose the integration 
does not stop at the edge 3-4 (Fig.1), but has to be continued along the T axis, 
namely on the following element G12. In this case the North Target Edge 3-4 
solution will be used as initial-condition on the South Edge of G12. 
 

                                                           
4 For higher degree Concordant Functions the number of equations increases, in which case higher 
order derivatives of the PDE become necessary 
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4. Residual function and its use 
4.1 Residual function  
 Suppose that for a given PDE a function )t,x(~

φ that fulfils the boundary 
conditions exists and is known. The way to verify if )t,x(~

φ represents a solution of 
the PDE is to replace it in (1.5) that leads to the function 

)t,x(Q~)t,x(P
t

~
)t,x(N

x

~
)t,x(M)t,x(R +φ+

∂
φ∂

+
∂
φ∂

=    (4.1) 

If R(x,t) – referred as residual function – is zero the function 
)t,x(~

φ represents a particular analytic or exact solution of the PDE. If the residual 
function is different from zero, the analysis of its values represents the best way to 
appreciate the precision of the numerical result. A very small residual will 
indicate (under certain conditions described below) that φ~ (x,t) is a good solution. 
An example of the residual variation for a particular case is given in Fig.3 and in 
Fig.4 (angle of view opposite to Fig.3). 
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  Fig.3     Fig.4 
 
4.2 Residuals at the Target Edges  

It is necessary to precise that the equation (1.8) where )t,x(φ  is replaced 
by a Concordant Function imposes in fact the condition that the integral of the 
residual is zero. This includes the possibility that on some portions R(x,t) may be 
positive and on other negative. In fact on the Start Edges the residuals R12(x,t=0) 
and R13(x=0,t) are usually different from zero (see Fig.3), because the CF is 
rigorously adapted – due to (2.4) and (2.6) –  to the imposed boundary conditions 
that do not depend on the PDE. On the contrary due to the integration procedure 
the residuals on the Target Edges become close to zero5 , as it results from Fig.4. 

                                                           
5 The visual impresion that the residual is zero is delusive 
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Therefore the verification of the residuals will be performed only on the Target 
Edges from where the information is transmitted to the neighboring elements 
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Both residuals (4.3) and (4.4) are one-dimensional functions, which 

simplify the analysis necessary to obtain a numerical criterion that certifies the 
quality of the solution. These functions can be represented as graphs that allow 
appreciating how close the AEM solution verifies the PDE along 2-4 or 3-4  target 
edges. Nevertheless it is better to have – instead of a function – a single numerical 
criterion in order to appreciate the accuracy of the computation. 

 
4.3 Root Mean Square Residuals 
 The residual RNorth (4.3) can be computed in a number of points NP having 
xi(i=1,2,…NP) abscissas. Based on these values one can calculate a mean square 
root value given by [1,5] 

∑
=

=

==
NPi

1i

2
4iNorthNorth,MS )]tt,x(R[

NP
1R    (4.5) 

 For the East Target Edge residual (Fig.2, edge 2-4), a similar computation 
is performed along the ordinate t, for the constant abscissa x=x4 

∑
=

=

==
NPi

1i

2
i4EastEast,MS )]t,xx(R[

NP
1R    (4.6) 

Both (4.5) and (4.6) values may be compared with an allowable residual: 
     RMS  < Rallow       (4.7) 

The parameter Rallow is a conventional value that remains to be established. 
Some numerical tests solved by the author have shown that a value of RMS smaller 
than 10-9-10-10 indicates a very good result that can be considered as accurate, but 
greater values like RMS ≈ 10-7-10-8 can also be accepted [1,5]. On the contrary, a 
value like RMS =10-3 shows that the corresponding solution φ~ (x,t) has to be 
rejected and a new computation using modified conditions (shape of the element, 
number of elements or/and a different Concordant Function) has to be performed. 
The value chosen for Rallow is obviously disputable. 

The RMS approach gives to the user a powerful and global tool to verify the 
validity of the whole computation, no matter how many elements or CFs are 
involved. It is important to underline that the numerical tests (4.5) and (4.6) 
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performed on any element are independent of the results obtained on the previous 
elements. Consequently they represent a verification of the whole procedure, 
concerned only by the final result, being therefore independent on the 
various steps covered in order to obtain φ~ (x,t).  
 
4.4 Accuracy estimation of the Target Value φ4(x4,t4)  
 The Target Value results from the CF (2.2) by replacing x=x4 and t=t4. A 
first question has to receive an answer: is the value of φ4(x4,t4) reliable or not ? 
The procedure based on the RMS, namely the relation (4.7), represents a basis for 
finding the answer. If both values (North and East) of the RMS are very small and 
therefore allowable, one can conclude that the value of φ4(x4,t4) is reliable and 
good, but not how far is from the accurate result. In fact, because (4.1) includes 
besides the solution (2.2) also its derivatives, the residual computation does not 
verify directly the values of the function. 
 An answer concerning the precision level of the Target Value φ4(x4,t4) can 
be obtained following different ways, from which we mention: 
 1. Compute the Target Value φ4(x4,t4) by using an increasing number of 
elements in order to obtain information on the convergence of the results. This can 
be done by comparing the values obtained for φ4(x4,t4) using NE and  [NE+Δ(NE)] 
elements, respectively, which allows to obtain an estimated error given by 

Estimated Target Error =
( ) ( )
( ) ( ) )NE(44)NENE(44

)NE(44)NENE(44

t,xt,x
t,xt,x

φ+φ

φ−φ

Δ+

Δ+   (4.8) 

Obviously, this is only an estimated error because it is related to another 
computed value φ4(x4,t4)(NE), not to the actual value which is unknown. This error 
may be used only as a primary test. Anyway, a lack of convergence can indicate 
that the integration strategy used is not adequate. 
 2. Compare the values of φ4(x4,t4) obtained by using different Concordant 
Functions, for instance CF5-21 and CF7-36. If two Target Values computed using 
polynomials with different degrees coincide for instance with 6 decimal digits or 
more the result can be considered as good and the Estimated Target Error thus 
obtained is reliable.  
 
5. Integration examples using a standard strategy 
 
 The strategy used for the numerical integration extended on a rectangular 
mesh is usually based on some trivial ideas: 
 1. The ratio between the base B and the height H has to be close to unity, 
therefore the best element is a square. 
 2 If no reliable method to verify the errors is available, the computation is 
developed by increasing the number of elements. If the results are convergent 
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towards a certain value, the computation can be stopped when the relative error 
between the values of the (S) and (S+1) steps reaches a level that can be 
considered as allowable. This approach leads to the estimated error mentioned 
above. In the unusual case when the exact value is known, one can calculate at 
each step an actual error. 
 For all the examples that follow the integration of the PDEs with variable 
coefficients will be performed on a rectangular domain D extended along X from 
XLeft=0 to XRight=1 and along T from TStart=0 up to TTarget=1. 
 
5.1 Integration of a PDE for which the solution is known 
Example1. Let be the PDE with variable coefficients 

0)T,X(Q)2T4XT2X2T4X1(
T

)3T2XT3X3T2X4(
X

)3T3XT2X4T3X1(

G
22

2222

=+φ++++++

+
∂
φ∂

++++++
∂
φ∂

+++++
     (5.1) 

that has to be integrated with the following initial-boundary conditions: 
Initial conditions (T=0):     2XX32)X( ++=Ψ        (5.2) 
Boundary conditions (X=0):    2T3T22)T( ++=Ω           (5.3) 
 A solution of (5.1) )T,X(φ  has been taken at random as a two-dimensional 
eleventh-degree complete polynomial with 78 terms. Replaced in (5.1) the solution 

)T,X(φ  leads to a free term QG(X,T) with 105 terms. The Target value obtained 
from )T,X(φ is 

157)1T,1X( ===φ         (5.4) 
Due to the great number of terms it was considered that reproducing here )T,X(φ  
and QG(X,T) is not necessary. 
 The integration will be performed using three different Concordant 
Functions: CF5-21, CF7-36 and CF9-55. Because the degree of the solution 

)T,X(φ is greater than all the three CFs, the numerical results obtained using a 
small number of elements cannot be accurate [2,3]. The integration will be 
performed following the standard strategy mentioned above. Because the exact 
Target Value is known from (5.4), in this particular case it is possible to calculate 
the actual error. From the results given in Table 1 it is useful to observe: 
 1. For each CF the results are convergent towards the exact value (5.4) 
when the number of elements increases. 

2. The results improve when the degree of the Concordant Function 
increases, if the same number of elements is considered. 
 3. As it was shown in §2, the Accurate Element Method is an implicit 
method, therefore one can use elements having quite large dimensions that can be 
considered as improper by other methods. For instance the computation starts for 
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each CF with a single element having B=1 and H=1. The value obtained in this 
case is far from (5.4) for CF5-21, but quite good for CF9-55. 
 4. Some results obtained using CF9-55 can be considered as accurate. The 
values obtained with 9, 16 and especially 25 elements (such as 157.0000009 or 
157.0000001) are convincing. The results obtained using CF7-36 with more than 
64 elements can also be considered as satisfactory. 

 
          Table 1 

Elements 
NE=NCOL× 

NROW 

CF5-21 CF7-36 CF9-55 
φ (X=1,T=1) Actual 

error 
φ (X=1,T=1) Actual 

error 
φ (X=1,T=1) Actual 

error 
1×1=1 164.076 4.5×10-2 155.598469 -8.9×10-3 157.0589174 3.7×10-4 
2×2=4 157.992 6.3×10-3 156.963215 -2.3×10-4 157.0002136 1.4×10-6 
3×3=9 157.245 1.6×10-3 156.996370 -2.3×10-5 157.0000088 5.6×10-8 

4×4=16 157.084 5.3×10-4 156.999326 -4.2×10-6 157.0000009 5.8×10-9 
5×5=25 157.035 2.3×10-4 156.999819 -1.1×10-6 157.0000001 9.9×10-10 
6×6=35 157.017 1.1×10-4 156.999939 -3.9×10-7 * * 
7×7=49 157.009 6.1×10-5 156.999975 -1.5×10-7 * * 
8×8=64 157.005 3.6×10-5 156.999989 -7×10-8 * * 
9×9=81 157.003 2.3×10-5 156.999994 -3.4×10-8 * * 

10×10=100 157.002 1.5×10-5 156.999997 -1.8×10-8 * * 
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          Fig.5            Fig.6 
 
 Another way to verify the accuracy of the results is to represent the graphs 
of the North Edge Target Values for T=1 (Fig.5) and East Edge Target Values for 
X=1 (Fig.6). Both graphs correspond to the case 4×4=16 elements (CF7-36, 
Table 1) and show a perfect match between the AEM results and the exact values. 
 Nevertheless, as it will result from the next example, no hasty conclusion 
has to be retained concerning the validity of the computation strategy used in this 
case. 
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5.2 Integration of a PDE whose solution is not known  
Example2. The PDE with variable coefficients 

0)T3XT4TX2X6T18XT28X13T22X195.2(
T

)3X2X4(
X

322322

2

=+++++++++−

−φ+
∂
φ∂

+++
∂
φ∂

 (5.5) 

will be integrated on D using CF7-36, with the following initial-boundary 
conditions taken at random: 
Initial conditions (T=0):        5432

G X01.0X03.0X2.0X1.0X3.01)X( ++++−=Ψ       (5.6) 
Boundary conditions (X=0):    5432

G T01.0T03.0TT3.0T2.01)T( ++−+−=Ω        (5.7) 
The strategy of integration for this PDE – that has as single variable 

coefficient (4+2X+X2) – is the same used in the previous example. The 
computation starts also with a single square element (Table 2, Test 1). In order to 
maintain square elements during the further computation, the number of columns 
(NCOL) and rows (NROW) are multiplied simultaneously by the same number. 

 
                  Table 2 

Test NE=NCOL× 
NROW 

φ (X=1,T=1) Estim. 
error 

North RMS 
residual 

East RMS 
residual 

Ratio 
North/East 

(1) (2) (3) (4) (5) (6) (7) 
1 1×1=1 9.2710 * 3.1×10-3 8.4×10-5 37 
2 2×2=4 9.1849 4.7×10-3 1.7×10-2 2.8×10-5 611 
3 3×3=9 8.7845 -2.2×10-2 1.1×10-2 1×10-5 1074 
4 4×4=16 8.5328 -1.4×10-2 3.8×10-3 1.4×10-6 2694 
5 5×5=25 8.4135 -7×10-3 2.8×10-3 4.8×10-6 575 
6 6×6=35 8.6173 1.2×10-2 1.1×10-2 1.2×10-5 905 
7 7×7=49 9.1462 3×10-2 9.3×10-3 2.1×10-5 446 
8 8×8=64 8.6249 -2.9×10-2 5.1×10-2 5.3×10-5 950 
9 9×9=81 6.9851 -1×10-1 6.1×10-2 1.1×10-4 538 
10 10×10=100 9.3847 1.5×10-1 2.1×10-1 1.9×10-4 1144 
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The results obtained in this case following the strategy used for the 
previous example are disappointing, because the computed Target Values (Table 
2, column 3) are erratic and non-convergent. This erratic behavior is also 
confirmed by the Estimated Target Error (4.8) given in column 4 and by the 
values of the North and East RMS residuals (Columns 5 and 6). From the graph 
given in Fig.7 (where the accurate Target Value obtained following a different 
strategy is also indicated) it results clearly that no credible Target Value 
φ (X=1,T=1) can be retained. The standard strategy which recommends the 
increase of the number of elements has failed. 
 
6. The integration strategy of the Accurate Element Method  
6.1 A deeper analysis concerning the integration of a very simple PDE 
 
 The integration strategy that will be further used is based on a more 
flexible approach made possible by the information concerning the North and 
East residuals, furnished by the Accurate Element Method. Some important 

aspects have resulted in [1] from the simplest PDE ( 0
T

2
X

=
∂
φ∂

+
∂
φ∂ ) that has been 

integrated on the large rectangular domain limited by X=1, T=10. The results 
represented by the Target Values are reproduced here in Table 3. Because in this 
case the exact Target Value is known, the analysis and the conclusions are 
reliable. The strategy used for the integration was different from that used here in 
§5 being performed on a single column, increasing at each test the number of 
elements. This procedure leads to a modified shape of the elements. In fact, the 
ratio between the height H and the base B starts for the first element with H/B=10, 
becoming for the last element ten times smaller, namely H/B=1. The North and 
East residuals show an improvement when the number of elements increases from 
1 to 4.  For NE=5  it results  an impressive improvement  because both residuals 
drop to 10-13 while the actual error becomes 1.4×10-15. This indicates that the 
accurate solution has been reached. If the number of elements is further 
increased, the results remain good but with some greater errors. 
 

        Table 3 
Exact Target Value φTE = 749.2

NE B×H Target Value 
φTE(X=1,T=10) 

Residuals Actual 
error RMS-North RMS-East Ratio N/E 

(1) (2) (3) (4) (5) (6) (7) 
1 1×10 748.0424382716078 7.6×10-4 3.9×10-1 1/513 -1.5×10-3 

2 1×5 747.7472991695568 7.7×10-4 1.1×10-1 1/143 -1.9×10-3 
3 1×3.33 749.2102287345520 7.3×10-5 1.2×10-3 1/16.4 1.4×10-5 
4 1×2.5 749.2011443978998 1.3×10-4 4×10-4 1/3.1 1.5×10-6 
5 1×2 749.2000000000011 3×10-13 3.9×10-13 ≈1 1.4×10-15 
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6 1×1.66 749.2000001699947 1×10-7 4×10-8 2.5 2.2×10--10 

7 1×1.43 749.2000000113434 4×10-9 7×10-10 5.7 1.5×10-11 
8 1×1.25 749.1999999939001 1.4×10-9 1.1×10-10 12.7 -8.1×10-12 
9 1×1.11 749.1999999992441 1.5×10-9 5.5×10-11 27.2 -1×10-12 
10 1×1 749.2000000104398 9.1×10-10 1.2×10-11 75.8 1.4×10-11 

 
This analysis can represent a basis for a modified strategy that will be 

applied in the following examples. The first idea which has to be retained is that 
very good results can be obtained by using elements whose shapes are 
different from a square; the first problem to be solved is to find the best possible 
shape. The second idea is that increasing the number of elements does not lead 
always to better values; the problem that results is to find the number of elements 
beyond which the values worsens. The Accurate Element Method can give 
answers to both problems. 
6.2 A strategy to find the best possible shape. As it results from Table 3 the best 
value was not obtained for the maximum of elements (NE=10), but for a smaller 
number (NE=5). For NE=10 the element is square, while for NE=5 is rectangular 
with H/B=2. Or, as it results from the columns (4) and (5), this last element is the 
only one for which the North and East residuals are nearly equal. The 
equality of the two residuals can be synthesized by their ratio  
 

Ratio N/E=( RMSNorth) / (RMSEast)   (6.1) 
 

This parameter that was not used in [1] is added here in Table 3, column (6). The 
variation of the ratio (6.1) using a logarithmic scale is given in Fig.8.  

Obtaining the best possible shape means in fact to find the ratio B/H (or 
H/B) for which the Ratio E/N is EQUAL to the unity. To obtain exactly this 
value is seldom possible; therefore the above condition may be reasonably 
changed in “find the ratio B/H (or H/B) for which the Ratio N/E is CLOSE to 
the unity”. 
6.3 A strategy to find a good result. When the procedure to find the best shape 
has been successfully accomplished and as a consequence the shape of the 
elements has been established, one can appreciate the accuracy of the result from 
the RMS of the North and East residuals. If this value is considered as satisfactory 
[according to (4.7)] the computation may be stopped. If not, the number of 
columns and rows of the mesh will be increased in the same amount, in order to 
maintain the shape for which the Ratio N/E was close to the unity. Maintain the 
shape does not mean compulsory that the ratio (6.1) remains unmodified. 
Therefore it is necessary to verify if (6.1) is close to the unity; if not, one has to 
modify the number of columns or rows for finding the best shape for the new 
configuration. 
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This strategy may sometimes be more complex because – if the results are 
unsatisfactory – the full procedure can also include the decision to change the 
Concordant Function. Nevertheless all these requirements may be easily 
implemented in a program that finds a good solution without any intervention of 
the user. This “automatic” search (as it was programmed by the author) does not 
give always the best results.  
 The examples that follow intend to illustrate this strategy. 
Example 3. The Example 2 will be solved using CF7-36 starting as in Table 2 with 
a single element. Because the ratio RatioN/E=37 (Table 4,Column 6), one choose 
for the second test two rows for which RatioN/E=1599 that is worse than Test 1. 
This shows that the decision to increase the number of rows was wrong, so that 
for Test 3 one increases the number of columns (NCOL=2), while NROW=1. This 
leads to RatioN/E=27, which is better than for the Test 1. If the number of columns 
is further increased, one obtains for Test 6 a RatioN/E near to unity, so that the best 
possible shape corresponding to a single column has been reached. The value of 
the RMS=1.2×10-9 can be considered a good result, the corresponding target value 
being  

φ (X=1,T=1)=8.656505067110762       (6.2) 
 If the user is not satisfied with the RMS obtained for the Test 6, the 
computation can continue by doubling succesivaly the number of columns and 
rows (Tests 8 and 9). For the Test 9 it results RatioN/E=1/2.6, which is a good 
value and the mean RMS=2.55×10-13. The Target Value corresponding to Test 9  

φ (X=1,T=1)= 8.656504813177039     (6.3) 
can be considered as accurate. This value was used for the graph given in Fig.7. 
 
 

                                      Table 4  
Test NE=NCOL× 

NROW 
Target Value 
φ (X=1,T=1) 

ResidualMS 
North 

ResidualMS 
East 

Ratio 
North/East 

Relative 
Error 

(1) (2) (3) (4) (5) (6) (7) 
1 1×1=1 9.271063416732901 3.1×10-3 8.4×10-5 37 7.1×10-2 
2 1×2=2 9.266059718797713 4.6×10-3 2.9×10-6 1599 7×10-2 
3 2×1=2 8.972009233893001 1.1×10-3 4.1×10-5 27 3.6×10-2 
4 4×1=4 8.665058847812112 2.2×10-5 7.1×10-7 31 9.9×10-4 
5 6×1=6 8.656504565787088 1.6×10-9 4×10-9 1/2.5 -2.8×10-8 
6 7×1=7 8.656505067110762 1.3×10-9 1.1×10-9 1/1.2 2.9×10-8 
7 8×1=8 8.656504868028492 3.8×10-10 1.7×10-9 1/4.5 6.3×10-9 
8 14×2=28 8.656504814504606 7.4×10-12 2.8×10-11 1/3.8 1.5×10-10 
9 28×4=112 8.656504813177039 1.4×10-13 3.7×10-13 1/2.6 * 

 
Remarks. 1. The error of the value (6.2) if compared to (6.3) is 2.9×10-8. For a 
usual computation such a precision may not be necessary, in which case the Tests 
8 and 9 are useless. 
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2. Unlike the erratic values obtained using a wrong strategy in Example 2, the 
values given in Table 4 are strictly convergent when the number of elements 
increases. 
 
Example 4. The PDE with variable coefficients  
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+
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++
 (6.4) 

 
will be integrated on D the initial-boundary conditions being (2.2) and (2.3). 
       The integration is performed using successively CF5-21, CF7-36 and CF9-55. 
The main results obtained using the strategy followed in Example 3 are given in 
Table 5. Some remarks concerning the results have to be mentioned: 
 1. In this case the ratio B/H>>1, being therefore reversed as compared to 
Example 3, where B/H<<1. 
 

          Table 5  
Test NE=NCOL× 

NROW H
B  Target Value 

φ (X=1,T=1) 
ResidMS 

North 
ResidMS 

East 
Ratio 

North/East 
(1) (2) (3) (4) (5) (6) (7) 

CF5-21
1 1×7=7 7 5.460095975254646 4×10-4 1.4×10-4 2.85 
2 2×12=24 6 5.454168955719426 1×10-5 3.6×10-6 1/3.6 
3 3×18=54 6 5.453791761125538 1.2×10-6 1.4×10-6 1/1.2 
4 4×25=100 6.25 5.453725908386619 2.9×10-7 2.7×10-7 1.07 
5 5×32=160 6.4 5.453704642743616 9.8×10-8 7.4×10-8 1.32 
6 9×65=585 7.2 5.453690222722832 6×10-9 7.2×10-9 1/1.2 

CF7-36
7 1×5=5 5 5.458669407203526 1.3×10-5 4.2×10-5 1/3.2 
8 2×15=30 7.5 5.453691682364898 8.7×10-9 8.7×10-9 ≈1 
9 3×22=66 7.3 5.453688986594051 2.6×10-9 1.8×10-9 1.44 
10 5×32=160 6.4 5.453688728692493 2.35×10-10 2.39×10-10 1.02 
11 6×40=240 6.7 5.453688724546589 8.4×10-11 6.8×10-11 1.23 
12 10×64=640 6.4 5.453688721408778 4.6×10-12 4.1×10-12 1.12 

CF9-55
13 1×7=7 7 5.453703569440119 1.5×10-7 7×10-8 1/4.7 
14 2×14=28 7 5.453688711719918 4.2×10-10 2.3×10-10 1.82 
15 3×20=60 6.7 5.453688723145416 2.4×10-11 1.3×10-11 1.85 

 
 2. If the values obtained using CF5-21 and CF7-36 are compared it results 
that the second CF leads to similar results with a smaller number of elements. For 
instance the RMS ≈ 10-9 is reached by CF5-21 with 585 elements (Test 6), while for 
similar result CF7-36 needs only 66 elements (Test 9). The same happens for the 
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RMS ≈ 10-11 that is reached by CF7-36 with 240 elements (Test 11), while a similar 
result is obtained by CF9-55 with only 60 elements (Test 15). 
 3. While the goal of the Example 3 was to describe and apply the 
integration strategy developed by the Accurate Element Method, from this 
example results another test that intends to verify the precision of the Target 
Value: compute the estimated error by comparing the results obtained with 
different Concordant Functions. For instance one can compare the following tests 
that have similar residuals (RMS ≈10-11): 
 
Tests 11 (CF7-21):                  φ (X=1,T=1) = 5.453688724546589 
Test 15 (CF9-55):  φ (X=1,T=1) = 5.453688723145416    
 
From the comparison it results: 

a. The two values coincide with 9 digits, so that one can considered 
φ (X=1,T=1) = 5.45368872 as reliable. 

  b. The relative error between the two values is 1.3×10-10. 
 This comparison that leads (for similar residuals) to close results using 
Concordant Functions with different degrees represents a solid confirmation 
of the Accurate Element Method as a whole.  
 
7. The characteristic curves 

 The strategy for finding the best shape of the element can be 
explained by the characteristic curves of the PDE (5.5) that are obtained by 
integrating the ordinary differential equation [1,7,8] 
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The integral of (7.1) is 
32 XXX4K)X(T +++=     (7.2) 

where K is an integration constant. In fact (7.2) represents a bunch of parallel 
curves, corresponding to different values of K. Suppose an element whose origin 
is in global coordinates (Fig.9) at Node 1 (XS, TS). The characteristic curve 
starting from Node 1 results from the condition that to X= XS has to correspond 
T= TS 
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     Fig.9a    Fig.9b            Fig.9c 

 
Suppose the particular case represented in Fig.9b where the curve (7.2) 

that starts from the node 1 – marked with xxxx – intersects the Target Edge 3-4 in 
the node 4, dividing the element in two sub-domains. In this case the information 
furnished by the initial condition (Input South) is used to perform the integration 
only on the south-east sub-domain, while the boundary condition (Input West) is 
used only on the north-west sub-domain. Because the two sub-domains are 
separated by the charactestic curve 1-4 there is no information interference 
between them. Consequently, the Concordant Function receives correctly on 
each sub-domain the information furnished by the initial and boundary conditions, 
respectively. The information resulted from the integration is therefore also 
correctly transmited to the North and East output edges. In this case the mean 
square residuals RMS that correspond to these two edges – both reflecting the same 
Concordant Function and the same PDE – are correctly evaluated and therefore 
have to be  nearly equal. This has been observed for the case NE=5 in Table 3 
and also in Fig.8. 

Suppose now the case represented in Fig.9a, where the characteristic curve 
intersects the Target Edge 3-4 at the abscissa XOUT . In this case the information 
received from the West edge (adapted by the Concordant Function to the 
governing PDE due to the conditions developed in §2.3) is transmitted to the 
neighboring North element through a portion between Node 3 and XOUT. The 
information received from the South Edge is less fortunate, because it is 
transmitted simultaneously to the East side element but also to the North side 
element through the segment between XOUT and Node 4. As a consequence, the 
North side element will receive distorted information, composed not only by the 
correct output between Node 3 and XOUT, but also by the unexpected (and 
incorrect) information furnished between XOUT and Node 4 that arrives from the 
initial (South Edge) condition. On the contrary the East side element will receive 
correct information furnished only by the initial (South) condition. It results that 
the East side output is correct, while the North side output is incorrect. This 
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is reflected, numerically, in a Ratio N/E far from unity. This ratio tends to 
increase (or diminish) when the position of XOUT is closer to the node 3 (Fig.2). 

On the contrary, in the third case reflected by Fig.9c, the start curve (xxxx) 
intersects the Target Edge 2-4 in a point that has the ordinate TOUT. This time the 
correct information is furnished by the North edge; on the East edge the 
output is distorted being composed by the (correct) South input information to 
which the some West input information is forcibly added.  
 
8. Conclusions  
 
 The Accurate Element Method based on the strategy “best shape-tested 
Target value” leads towards very good (if not accurate) Target Values. But more 
important is the possibility offered to the user to follow “with opened eyes” the 
integration procedure, namely to choose/change the type of the CF used, to know 
the level of the possible errors and to decide – based on the requirements of each 
specific case – when the computation can be stopped. Besides the Target Value, it 
is trivial to obtain any type of graphs, which can be easily drowned because for 
each element is available a quasi-analytic solution. 
      Some further developments of the method have already been mentioned in [1]. 
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