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LIFE PREDICTION OF SATELLITE LITHIUM BATTERY
BASED ON MULTI TIME-SCALE EXTENDED KALMAN
FILTER (EKF) ALGORITHM

Qian-Qian LIUY, Bing CHEN?, Jingyuan ZHANG?

State-of-Charge (SOC) and the maximum available capacity estimation are the
most important parts of satellite lithium battery life prediction. However, the
parameters of the maximum available capacity change slowly compared with the fast
time-varying SOC. This paper proposes a multi time-scale of Extended Kalman Filter
(EKF) algorithm on SOC and the maximum available capacity for estimation on
different time scales. The estimated value of SOC is used as an observation on the
macro time-scale to update the maximum available power. The simulation results of
experiment on NCA/C space borne lithium battery show that SOC and the maximum
available capacity estimation from the proposed multi time-scale EKF algorithm has
higher accuracy and computational efficiency compared with Dual EKF.

Keywords: Satellite lithium battery SOC, the maximum available capacity, the
venin circuit model, Multi time-scale Extended Kalman Filter (EKF)
algorithm

1. Introduction

Lithium batteries are critical to the satellite power distribution systems and
are gradually replacing traditional batteries as the third-generation satellites with
energy storage [1].0wing to charge, discharge management and performance
recession of lithium battery [2], its working state monitoring, performance
degradation and residual life prediction (RUL) have become the key in the field of
satellite system fault prediction and health management (PHM) research.

The maximum available capacity of battery is often used as degradation
characteristics of battery life. Precise SOC estimation can not only be used to assess
the reliability of equipment but reflect the residual service life of the battery. In
addition to the traditional open circuit voltage method and the ampere-hour integral
method, literature [3] [4] [5] analyzed Kalman filter method applied to satellite
lithium battery SOC estimation in detail. In Literature [6], the EKF algorithm was
improved. The Sigma point set is constructed by using the state quantity and
variance matrix. The Kalman filter algorithm based on Sigma point can achieve
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better accuracy. In literature [7], the Kalman filtering algorithm was combined with
the ampere-hour method. In literature [8], unscented Kalman filter was used for
lithium battery SOC prediction. The dual EKF estimation algorithm put forward in
[9] can make real-time SOC and maximum available capacity with voltage and
current measurements with noise.

The accuracy of maximum available capacity estimation obtained by using
state and parameter estimation technology is poor, which has two reasons. One is
that the voltage of the battery is the only measurement, but the connection between
the maximum available capacity and the battery voltage is very weak; additionally,
due to the strong correlation between SOC and the maximum available capacity,
inaccurate maximum available capacity estimation would further lead to inaccurate
SOC estimation, and vice versa. In terms of computational efficiency, maximum
available capacity is the slow-time variable of indicator system of health (SOH)
state [12], [13]. If the maximum available capacity and fast-time variable SOC are
operated on the same time scale, which would lead to high computational
complexity. In order to solve these difficulties, this paper proposes a multi time-
scale EKF algorithm to estimate the SOC and maximum available capacity
respectively. Contribution mainly includes: (1) Multi time-scale SOC and the
maximum available capacity of time scale separation estimation algorithm are
proposed; (2) The estimated SOC 1is used to update the prediction value of
maximum available capacity dynamically. As a technology of ampere-hour method
and EKF filtering, this algorithm realized higher precision and efficiency than Dual
EKF.

2. Satellite lithium battery system description
2.1Thevenin battery model

The equivalent circuit model of satellite lithium battery is Rint model, RC
model; Thevenin model and PNGV model [4] and so on. Thevenin model [9]
considered the mutation and gradual change of battery voltage under the excitation
of current, the structure is shown in Fig.1.The model parameters described as
follows. Uoc is the open circuit voltage (OCV) of battery; R is used to describe the

charge accumulation and dissipation of battery ohm resistance in double electric
layers; R, describes the battery polarization resistance, C, describes the battery

polarization capacitance. The RCnetwork they constructed is used to simulate the
dynamic characteristics of satellite battery showing in the process of generation and
elimination in the polarization phenomenon. U, is the polarization voltage on the

RC network, U describes the terminal voltage of battery, I describes the load
current of battery (assuming discharge current is positive, and charge current is
negative).
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Fig.1 Thevenin equivalent circuit model

SOC is defined as the ratio of available capacity to nominal capacity. When
the environment temperature is certain, the relationship between OCV and SOC is
not only a reflection of static characteristics of lithium battery [11], but also
discernible.

Set z=S0C | where f(z) is used to describe the determined relationship

between OCV and SOC. It is important to point out that the connection of battery
SOC and its terminal voltage has been enhanced through the f(z), which is very

important for the improvement of SOC prediction accuracy. It can be known from
Fig. 1 that the mathematical relationship of Thevenin model parameters can be
expressed as follows:

U=U,-U IR =f(2)-U,-IR (1)

U,=-U,/(RC,)+1/C, )

Ampere-hour method is the simplest SOC estimation method which is
currently used more frequently [14], [15]. It makes integral calculation with the
current flowing through the battery in run-time to calculate the flowing in or out of
battery. If the initial battery SOC value is available, it can be used for obtaining the
battery remaining power. Eq. (3) is the foundation of SOC state equation:

SOC=1—(J'i-77-dt)/Q (3)
where i is the current, Q is the maximum available power consumption, # is

the time and 7 is Coulomb effective factor, which is defined as the ratio required
by charging and discharging energy restoring to the original power. 7 is less than
or equal to 1. For example, in the discharge model, when the minimum discharge
voltage is reached, it is thought that the battery has been completely discharged, and
SOC is 0.

Through the combination of Thevenin equivalent circuit model and
Ampere-hour method, the battery parameters, SOC and its terminal voltage are
associated. Taking SOC, polarization voltage U, as state variables, state Eq. is

obtained as follows:
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: 4

{SOCzl—(J‘in'dt)/Q
U,=-U,/(R,C,)+1IC,

Taking terminal voltage U as measurement value, the observation Eq. is:
U=f(2)-U,-IR (5)
2.2 Discretization model of multi time-scale

The application object of EKF is nonlinear discrete systems, therefore, the
continuous model in the above section needs discretization. For systems with very
different parameter variations, we can set two-time scales: the macroscopic time-
scale and the microscopic time-scale. The system volume on the macro time-scale
changes slowly with time but on the micro time-scale, it changes rapidly with time.

For convenience, k and | jg used as time index of macro time-scale and
micro time-scale. Any moment can be expressed ast,, , and there are relationships:
t,=to+l'T ,to=t,, (1=12..,L, k=12..,0), T is a fixed time interval
between two adjacent points. It should be noticed that L represents the level of
time-scale separation. According to the change of system parameters, simulation
time steps k of the macro time-scale can be determined; between time step k and

k+1 , according to the change of system state variable, the sampling period T can

also be determined, i.e. the micro simulation time steps | is determined.
Considering that the model parameters is slow time-varying ,we assume that the
battery is the time-invariant system, and load current is constant at each sampling
interval T .Then we can get the analytic solution Eq. (2):

t 1(IT)

u,( +1)T)=exp(—%)up(lT)+J‘;exp(—R St

p=p p=p p

(6)
Battery model shown in Fig. 1 takes State of Charge z and polarization
voltage U, as state variables, load current I as the input, terminal voltage U as

output, it obtains after discretization in multi time-scale:
T

T
Ukp,l =exp(— ) 'Ukp,l—l + (1 —exp(- ) Ryl (7)
PP RP p
Set z,, =SOC , Eq. (8) is obtained from Eq. (3),
77'k,|71T (8)

Loy =L~ Q
Setz, =R, -C,, Eq. (9) is obtained from Eq. (4) to (8),
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[Ui.]z exp(-1) 0 {UJ’H} @-exp(- DR |, o)
1 ,

2 0 -nT/Q
The discretization state transition and measurement Eq. on multi time-scale are,

Zk,I—l

xp(-1) 0 | |@-ep-D)R |
0 1 |-4T/Q | (10)

Yo = f(z,)-U. —Ruy,,

K1+l =

where X, =[z, UXT .6, =Q.,u,=1,,Y,=U,,,and U,, is the measurement
value of the battery terminal voltage att, .
In order to make the following discussion be more general, Eq. (10) is changed to
the following nonlinear state space model,

Transition: X, =F(X U, 6)+W,, 6., =6 +1

(11)

Measurement: y, | =G(X,,U,,,6,) +V,,

where, x, is the system state vector at time t,, =t ,+1-T, 1=12..,L, Tis the

fixed time interval between the neighboring measurement point. It should be
noticed that L represents the level of time separation, and x,, =x,,, . 6 1s the

vector of system model parameters at t; u,, is the input of external observation
source; y,, is the vector of system observation value or measurement value. w,,
and r,_ are process noise vector of state and model parameters. v, is the vector of

measurement voice, F(X, U, 6)and G(X, U, 6 are the functions of state

transition and state measurement, respectively.
3. Multi time-scale EKF algorithm

As for the discrete model of the system on the multi time-scale, multi time-
scale EKF algorithm is used to predict the SOC and maximum available capacity.
Multi time-scale EKF algorithm prediction process is divided into six steps, macro
EKF and micro EKF execute together in the form of a nested loop. Within each
macro time step k, macro EKF executes time update step, state prediction step and
measurement update step. Within each micro time step |, micro EKF executes time
update step and measurement update step. When | =1 cycles to =L  the macro

time step k ends and enters into the next macro time step k+1. Regardless of macro
or micro EKF, they both needs to get the experience value based on prior
information to model parameters ¢ and state x for initialization before conduction.
Covariance matrix ¥, and Y, for estimation error make initialization according
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to priori information too. Basic steps are summarized in Table 1.

Table 1.
Multi time-scale EKF algorithm steps
Steps Contents
Step 1 ,=El9), 3., =ELG,~6,)(6,~6,)']
initialization ' . o (12)
Xoo = E[Xo,o]v Zxk‘l =E[(Xo,o - Xo,o)(xo,o - Xo,o) 1
On macro-scale k € {l,...,0},
Step 2 time update of macro EKF 6 =6, ,, ng :ng + (13)
Step 3 State prediction of macro EKF X, =Fy (X 10U é,; ) (14

Step4  Measurement update of macro EKF
_ T _ T
K=, C)IC>,C) +2 1" (9
ék = él; + Klf[)’zk—l,L - )~(k-1,|_]: ng =(1- KECE)Z;k (16)

On micro-scale | {l,...,L},

Step5  Time update of micro EKF
o o %) - T
X = F(Xk,l—l’ Uy 110 G, ZXM =A<,|-12XKH A<,|-1 + ZWKH (17)

Step 6  Measurement update of micro EKF
- T _ T
K=, GG, € +2, 10 (9
)Zk,l = )A(k_,l + ka,l[ym _G()A(;,l’uk,l’gk-l)]a zm Z(I - KkX,ICkX,I)Z;H (19)

aF(X'uk,I—llék—l)
oX

oG(x,u ,97
,C‘:l _ ( al;(l k 1) (20)

X=R 11 X=Ki

_ ARy (K100 U roiss ‘9)|
do

Where, A=

C 1)

|f9=ék’

3.1. Macro EKF

Within each macro time step, parameter estimation value 4, and >, atthe
previous step are calculated according to Eq. (13). And then we use micro EKF for
predictive state according to Eq. (14), F,_,, (X, ,,, uk-l,L-1’6;> is the iteration form of
state transfer function F(X,, U, 6 in Eq. (11). Compare with the time and
measurement  update, the computational complexity  needed by

Fot (X100 Ug 1,00 calculation on micro time step L . On the measurement

update procedures, predicted state calculated by macro EKF and micro EKF
estimation state value are different, and difference is used to obtain the posteriori
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parameter estimation, seen Eq. (16). Macro EKF has two distinct features: since it
update S on the macro scale (L-T), the computational complexity is greatly reduced;
macro EKF makes state estimation from micro EKF firstly and then updates the
measurement. According to the Eq. (14) for state prediction achievement, the
parameter estimated value generated is decoupling through state prediction.

3.2 EKF Micro EKF

As for state transition, micro EKF uses the estimated value of maximum
available capacity achieved in the above macro time step procedure (seen Eq. (17)).

It is worth mentioning that in the initiation of each macro time steps, i.e., t,_,,

micro EKF sends a state estimation value to macro EKF, and then predicts the state
according to the state of Eq. (14) at the macro time step. After completing the state

prediction at each macro step, i.e., t_,,_,, micro EKF sends another state estimated

value to macro EKF to compare with the predicted estimation and use its difference
for correcting the parameter estimation value in the measurement update procedure
of Eq. (16).

3.3 Numerical implementation: Recursive differential calculation

On the Multi time-scale EKF algorithm, C/ calculation in macro EKF

involves in the total derivative of the state prediction function concerning the
parameters:

_ dFo L (K10 Yo 9)|
de

c’/ (22)

6=,

State amount x is also the function concerning system parameter @ ,
therefore, the total derivative is needed to split into partial derivative for circulated
calculation. The following Eq. can be obtained:

dFOHL ()’zk—l,o ' uk—l,O ! 0) — al:04>L ()zk—l,()’ uk—l,O:L—l’ 0) + al:04>L ()’zk—l,o ' uk—l,O: L-17 0) d)’zk—l,O (23)

do o0 R 1o deo
d)zk-l,o — dk;-l,o _ X dGO»L (*;-l,O’Uk-l,O: L—1’0) (24)
do de ki do
dGO»L ()?I:,O'uk,o: L—l’e) — aGO»L ()?;,Oluk,o: L—lle) + aGO»L()’G,O'uk,O: L—l’e) dﬁo (25)
de o0 R de
dg. . oF (R .., 0) 060G, (R .U o ..0)dR
k,0 — 0—L (Xk—l,O uk—l,O: L-1 ) + 0—L (Xk 1;\07 uk 1,0: L-1 ) Xk 1,0 (26)
de 00 R 1 de

C/ can be obtained according to the recursive calculation of Eq.s (23)-(26). The

partial derivative of state prediction parameters on state X and parameter @ can be
calculated easily according to the confirmed function form.



74 Qian-Qian Liu, Bing Chen, Jingyuan Zhang

3.4 Multi time-scale EKF algorithm to predict the satellite lithium
battery SOC calculation process

Next, the EKF prediction algorithm execution process of satellite lithium
battery system with multi time-scale is introduced in this paper. Flow chart is shown
in Fig. 2. Algorithm consists of two parallel extended Kalman filters; the upper part
(micro EKF) modifies SOC on the micro time-scale, the lower part (macro EKF)
modifies the power availability estimation value on macro time scale. Micro EKF
sends SOC estimation value to macro EKF and receives maximum available
capacity estimation value from macro EKF.

X L NO
k,1-1 micro time X micro X1 micro time X1 Micro
update measurement scale EKF
ikI N update 1=L? (SOC)
' Yo—  $—ig X, | VES
. - X macro macro
c- macro time C, macro state kil measurement Cy EKF(Maximum
k-1 update prediction update power
availability)

Fig.2 Multi time-scale estimation flow chart of satellite lithium battery SOC based on EKF

4. Simulation and Experiment Result
4.1 Experimental process

The NCA/C spaceborne lithium battery we used in this experiment is 1.6Ah.
Test system includes comprehensive test equipment of satellite lithium battery, the
temperature sensor module, NCA/C spaceborne lithium batteries, and the special
install fixture. Test equipment can support 8 channels for experiment at the same
time. According to the local test results, we use the data of battery No.37 for
identification and simulation. The NCA/C spaceborne lithium battery used in the
experiment and the experiment equipment are shown in Fig. 3.

4.1.1 Relationship identification of open circuit voltage Uoc - SOC

The process of model parameter identification and satellite lithium battery
SOC estimation are both involved in the relationship identification between EMF
(Electromotive Force) and SOC. Because EMF cannot be obtained by circuit
experiment directly, the present researches mostly use the balanced voltage when
battery opens, which is OCV to replace EMF; OCV and EMF are thought equal
approximately. In section 2.1, the battery open circuit voltage (OCV) is replaced
with f(z), identified results are shown in Fig. 4.
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(a) NCA/C spaceborne lithium battery (b) comprehensive test equipment of satellite lithium battery
Fig.3 satellite lithium battery and experiment equipment.
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Fig.4 Open voltage and SOC relationship Fitting
It can be seen from Fig.4 that with the rising of SOC, open circuit voltage
is almost a linear relationship at 0.3<SOC<0.9; the open circuit voltage changes

dramatically when SOC < 0.2. Therefore, the relationship fitting between open
circuit voltage at 0.3<SOC<0.9 and SOC is:

Uoc =-0.39909 - SOC? +1.4069 - SOC + 3.0966 (27)

4.1.2 Model parameter identification
Thevenin equivalent circuit model contains parameter R , R, andC, , which

are needed to be identified before using the model. Experiments are conducted
under 25 °C and the results of each parameter identification as shown in Fig.5:
We found that in the process of discharge, although the change ranges of R, andC,

is larger, but the change trend is relatively stable. It can be seen that the change
trends of them are on the contrary, which makes r,=R C  change little; R

fluctuates in the range of 0.032 QQ to 0.033 Q, and there is no certain linear rule.
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(a) is the relationship curve of discharge direction R and SOC;
(b) is the relationship curve of discharge direction C, and SOC;

0.0338 -
0.0336 [ Ve /X
00334 A
0.0332

4 A \

0.033 F N \ s

0.0328 - Yy 1

0.0326 - +

0.0324 . - - -
0.3 0.4 0.5 0.6 0.7 0.8 09

socC

(c) is the relationship curve of discharge direction R, and SOC.

Fig. 5 The relationship between the parameters (The red line is the fitted curve; discrete points
represent the true value of identification experiment).

4.1.3 Experimental verification under the custom working condition

After model parameter identification complementation, the prediction
model of satellite lithium battery SOC and maximum available capacity on multi
time-scale is established. The discharge experiment under a set of custom working
condition is used to test the estimation performance of the algorithm put forward
on SOC. The custom condition test scheme used is as follows: firstly, let the battery
fully rest, then discharges 500 seconds with the constant current 0.5 C=0.8A, rest
50 seconds. And then let battery charge 50 seconds with the constant current 0.5
C=0.8A. Repeat the above steps, 12 times in all. The experiment current is shown
in Fig. 6. The experimental current is loaded to test equipment of satellite lithium
battery according to the custom working condition. The current and voltage data of
the battery is extracted after the experiment. The battery parameters obtained in the
previous experiment corresponded to SOC from 0.3 to 0.9, in order to match the
parameters, SOC in this experiment all changes from 0.3 to 0.9. This section uses
Dual EKF and multi time-scale EKF algorithm respectively in the MATLAB
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software for offline verification on NCA/C lithium battery SOC and maximum
available capacity estimation. Experiment is carried out fewer than 25 °C.
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Fig. 6 Experiment current of the custom working condition

4.2 Experimental results and analysis

Thevenin equivalent circuit model is established in the MATLAB software,
the input signal for simulation experiment is current of the custom working
condition. SOC obtained using Dual EKF [11] and the curve of maximum available
capacity estimation is shown in Fig. 7.

—— Estimated
Reference

Terminal voltage(V)

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time(step) Time(step)

(a) is the relationship of terminal voltage prediction value and measurement value;
(b) is the relationship of SOC estimation value and truth-value;

/ Reference
Estimated

0 200 400 600 800 1000 1200
Time(step)

(c) is the relationship of system parameter Q estimation value and truth-value.
Fig.7 Simulation results of Dual EKF.
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The curve of NCA/C spaceborne lithium battery SOC and maximum
available capacity prediction obtained using multi time-scale EKF algorithm is
shown Fig. 8.

Terminal voltage (V)

0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Time(step) Time(step)

€)) is the relationship of terminal voltage prediction value and measurement value;
(b) is the relationship of SOC estimation value and truth-value;

Q (Ah)

135 f/
y

0 200 400 600 800 1000 1200
Time(step)

(c) is the relationship of system parameter Q estimation value and truth-value.
Fig.8 Estimation results of multi time-scale EKF algorithm.

In terms of maximum available capacity estimation, the initial values we set
are both less than the true values in the two methods, as shown in Fig. 7 (¢) and Fig.
8(c). From Fig. 7 (c), it can be known that estimation of the maximum available
capacity failed to closely track the real maximum available capacity; eventually, the
estimated value converged in about 4.3% error range and includes larger noise. In
Fig. 8(c), the estimated value is converged to the true maximum available capacity
gradually as the simulation steps increases. The accuracy of Dual EKF is low due
to measurement in SOC and maximum available capacity estimation and time scale
coupling. As shown in Eq. (28), for modifying the prediction value of maximum
available capacity, Dual EKF uses terminal voltage of the battery as the
measurement value to modify it.

ék_,l = ék_l + Kf,l Vi, = G(X,,U ) (28)

The difference is that multi time-scale EKF algorithm makes estimation on
maximum available capacity according to Eq. (29) and (30) on the macro scale. It
avoids the terminal voltage of the battery is the only measurement for the parallel
estimation process of SOC and the maximum available capacity.
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)'Zk—l,L = FOHL()’Zk—l,O’uk—l,L—l' é() (29)
ék = ék_ + Kkg[)zk—l,L —%X ] (30)

Moreover, there is no direct relationship between the observations Eq.
G(X,.u,,) and the maximum available capacity. When we use observed quantity

to update the maximum available capacity, it just relies on the measurement of
White Gaussian Noise on the Kalman filter processing, with limited effect.
Meanwhile, the state variable x, =[z,, U/]" and the maximum available capacity

have a direct connection. Using the state variable for parameters updating can
produce more reliable maximum available capacity estimation value.

Compare Fig. 7(a) and Fig. 8 (a), it is easy to see that simulation values of
the terminal voltage with multi time-scale are more closely following the measured
value change and contains less noise. The error of SOC estimation value in Fig. 8
(a) is smaller than Fig. 7 (a). The dependency of SOC estimation on the maximum
available capacity is larger; the deficiency of the maximum available capacity
estimation accuracy would reduce the veracity of SOC estimation. Multi time-scale
EKF algorithm provides a more accurate maximum available capacity estimation
value and SOC estimation is more accurate. Multi time-scale EKF algorithm
improves the prediction performance than Dual EKF to a certain extent.

In addition, the two methods are also compared in computational efficiency,
shown in table 2. In order to minimize the influence of randomness, the two
methods are carried out 10 times, and then take average for comparison. The time
of the average calculation is summarized in Table 2.

Table 2.
Computational efficiency contrast
Algorithm Type computing time | efficiency Improvement
Dual EKF [11] 0.552
Multi time-scale EKF algorithm | 0.522 5.43%

It can be observed that multi time-scale EKF algorithm consumes less
computation time than Dual EKF. This helps to reduce the burden of computation
and the hardware in satellite fault prediction and health management (PHM) system,
also improve the PHM system application flexibility and efficiency.

5. Conclusion

The multi time-scale EKF algorithm is an effective and accurate state and
parameter estimation method for engineering systems with time-scale separation.
In this paper, the multi time-scale EKF algorithm is used to predict the SOC of the
satellite lithium battery on the microscopic scale, and the SOC estimation is used
as the observation to forecast the maximum available electricity. The effect is better
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than the dual EKF estimation, and the calculation is improved effectiveness. The
next step will be to establish a satellite lithium battery equivalent model and OCV
and SOC relationship model, taking into account the impact of temperature on the
SOC, the impact of electricity on the OCV, etc., to improve the accuracy of the
model to obtain more accurate estimates.
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