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A BINOMIAL MOMENT APPROXIMATION SCHEME FOR 
EPIDEMIC SPREADING IN NETWORKS 

Yilun SHANG1 

Epidemiological network models study the spread of infectious diseases 
through a population of individuals. In this paper, we study a moment 
approximation scheme for the SIS (susceptible-infected-susceptible) epidemics 
spreading on configuration model networks via an empirical binomial distribution 
with time dependent parameters describing the number of infectives during the 
outbreaks. Based on this assumption, the evolution equations of higher order 
moments are expressed in terms of lower order moments. Numerical examples are 
provided to illustrate the availability of our approximation method. 
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1. Introduction 

Complex network has emerged as a prominent field in complex system 
research, and network models for disease propagation in human society have been 
used to understand many problems in epidemiology [1, 4, 9, 13, 15, 20, 21]. The 
threshold of the infectivity in the paradigmatic susceptible-infected-susceptible 
(SIS) model, for example, exhibits distinct phenomena for different network 
topologies [3, 17, 24]: while regular and random networks possess a non-zero 
epidemic threshold, that is a critical value of transmission probability under which 
the disease ultimately dissipates, such threshold disappears asymptotically in 
scale-free networks. A common approach to describe the dynamic behavior of the 
epidemic dynamics is by a Kolmogorov equation (or master equation) that 
governs the time evolution of the joint probability function of the underlying 
processes and naturally leads to Markovian models [22]. However, for a network 
with N nodes, the state space is much larger than N (e.g., with elements for SIS 
epidemics). Solving this system becomes a formidable task, especially when 
dealing with large-scale networks. 

To address this problem, pairwise-type approximate models are proposed 
and heavily used to capture the epidemic dynamics in networks [5, 6, 7, 8, 11]. 
The classic pairwise model [8] relies on a set of moments equations for the 
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expected values of individuals of different state (e.g., susceptible or infected) 
which depends on the expected values of individuals of different pair states with 
higher order moments replaced by appropriate chosen functions of lower-order 
moments (e.g., singles and pairs). The resulting approach is usually referred to as 
the moment closure/approximation method, which produces a self-contained 
system of ordinary differential equations (ODEs) whose solution provides 
approximate values for the moments of the epidemic processes. The similar 
thinking has been implemented earlier in a wider context of biological population 
processes and biochemical systems (see e.g. [2, 18, 19, 26]). Other approximate 
schemes include the probability generating function formalism [25] and the 
effective degree type models [12]. 

Recently, a novel moment closure is introduced in [10] based on the 
empirical observations that the number of infectives in SIS epidemics is well 
described by a binomial distribution with time dependent parameters. By using an 
a priori binomial distribution, the difference between the exact system from the 
solution of the approximate model is compared to  obtained via 
classic moment closure at the level of triples used for pairwise models. Note that 
the population considered therein is modeled by a fully connected graph (or 
complete graph), which limits the application of the proposed methodology. 

In this work, we investigate an SIS epidemic process on a random graph 
with arbitrary degree distribution. As in [10] we derive the ODE-based 
approximate model capturing the moments of the number of infectives at all times 
combined with the empirical binomial distribution with time dependent 
parameters. We show that the proposed model works well when the underlying 
network is generated by a configuration model [14] with 
homogeneous/heterogeneous degree distributions via numerical simulations. 

The rest of the paper is organized as follows. In Section 2, we present the 
SIS model on a configuration model graph and its Markov chain representation. In 
Section 3, we derive the binomial moment closure. Finally, we discuss some 
possible improvements in the closing section.  

2. The model 

In this section, we introduce the configuration model graphs and describe 
the transmission of SIS epidemics on such graphs with a dynamical systems type 
approach. 

A configuration model network is static with a known degree distribution 
[14]. We create a configuration model network with N nodes as follows. Suppose 
we are given i.i.d. random variables with distribution P(k) (k=0,…,N) 
that represent the degrees of each node. To the node i are associated stubs (half-
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edges). Once all nodes are assigned stubs, we choose two open stubs uniformly at 
random and pair them together to form an edge. We define 

                                               (1)  
the probability generating function of the degree distribution. So the average 
degree is <k>=G'(1), and the average number of nodes within 2-hop distance of a 
node is <k2>=G'(1)+G''(1) [16]. A sample configuration model network is shown 
in Fig. 1. 

 
Fig. 1. A sample configuration model network with 60 nodes. The degrees are chosen 

using P(1)=P(3)=0.5. Thus, G(z)=(z3+z)/2. 
 
In this context, the population for the prototypical SIS model consists of N 

nodes, whose states can be either susceptible or infected. This model is 
customarily used to describe the progression of infectious diseases conferring 
temporary immunity, such as common cold. An infected node spreads the disease 
to each one of its susceptible contacts at rate , while it heals at a rate  with all 
events occurring independently of each other. Denote by S and I the sizes of the 
set of susceptible and infected nodes, respectively. Then N=S+I at any given time. 
The number of infectives for the model is approximately described by a 
continuous time Markov chain on the state space 

                                                                           (2) 
where we propose to use 

                                   (3) 
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for k=0,…,N. While the transition is itself a spontaneous process, the 
transition from depends on the structure of the population and the 
contact patterns of individuals. Note that if the underlying contact network is a 
fully connected graph (i.e., pN-1=1), it gives rise to , which is 
the situation studied in [10, 23]. According to the above comments, the factor  
<k2>/(<k>(N-1)) in (3) encodes a density dependent ``expansion'' property 
averaged over the ensemble and the infectives and susceptibles are assumed to be 
randomly distributed on the network. 

Although quite straightforward, this extension provides an avenue to 
address epidemic spreading in general network settings, such as scale-free degree 
distributions, community structure and small-world phenomenon, which set them 
apart from simpler networks such as fully connected graphs.  For example, the 
scale-free degree distribution is characteristic of many real-world networks, 
including social and computer networks on which human diseases and computer 
viruses propagate [15]. 

The computational efficiency of our approach will be shown in the next 
section. Let pk(t) be the probability that the system is in state k at time t. The 
Kolmogorov forward equation for this process is 

                       (4) 
with ``birth'' rate bk and ``death'' rate dk given by (3), and additionally, b-1=dN+1=0. 

 

3. Binomial moment approximation 

In this section, we derive the moment equations and close them based on 
the empirical observation that pk(t) is well described by a binomial distribution 
[10]. 

For an integer i≥ 1, define 

                                                (5) 
be the ith moment associated with the above process (2). By using the 
Kolmogorov equation (4), the equation for the first moment can be derived as 



A binomial moment approximation scheme for epidemic spreading in networks           27 

                      (6) 
Similarly, the equation for the second moment is given by 

              (7) 

Let for i=1,2,…. Therefore, (6) and (7) can be 
rewritten in terms of xi's as 

                               (8) 
and 

  (9) 
Note that the above system is not self-contained since the second moment 

(x2) relies on the third moment (x3). In theory, the dynamics for x3 can be 
evaluated by a differential equation similar to the ones above, which requires 
evaluation of higher-order moments [8]. Now we employ the empirical 
observation that the distribution of the infectives are given by a binomial 
distribution Bin(n, p), and hence the parameters n and p can be expressed by [10] 

                      (10) 
The third moment can then be recast in terms of the first and second moment [10] 

                     (11) 
which is equivalent to 
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                                   (12) 
The closure (12) together with (8) and (9) provides a self-contained 

system, whose solution gives approximate values for the moments for the SIS 
process. In general, the expected number of infectives is given by 

                      (13) 
We demonstrate in Fig. 2 a comparison of theoretical results with Monte-Carlo 
stochastic simulations. The population size is taken as N=103 and 10 randomly 
chosen nodes are infected at the initial state for all the simulations. The results 
show good agreement for the approximate system (except that we have made time 
shifts for simulations due to stochastic effects early on in the epidemic). 

 
Fig. 2. Plot of fraction infected E[I(t)]/N against time based on simulation and binomial 

closures (dashed curves) in configuration model networks of 103 nodes with =1.6 and =1. 
Simulations are conducted for degenerate distribution: P(4)=1 (squares), bimodal distribution: 
P(2)=P(4)=0.5 (circles), Poisson distribution with <k>=10 (diamonds), and truncated power law 
distribution: P(k)=0.673k-2e-k/30 for 1≤ k≤ 20 (triangles). 

4. Discussion 

We have presented a framework which allows us to make some analytical 
headway in deriving low-dimensional approximate models applicable in network 
settings. The moment closure method is based on an a priori assumption about the 
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distribution of the infectives. Numerical results show good approximation for 
epidemic spreading on a range of configuration model networks. 

The network models studied here have no degree correlations, namely the 
probability that an edge arrives at a node of degree k is proportional to kP(k). If a 
network shows assortative/disassortative mixing (i.e., a tendency for high-degree 
nodes to connect preferentially to high/low-degree nodes), it would be desirable to 
refine the above model in order to obtain an improved approximation. 
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