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PATA TYPE FIXED POINT THEOREMS OF MULTIVALUED

OPERATORS IN ORDERED METRIC SPACES WITH

APPLICATIONS TO HYPERBOLIC DIFFERENTIAL INCLUSIONS

Samad Mohseni Kolagar1, Maryam Ramezani2, Madjid Eshaghi3

The purpose of this paper is to present some Pata type fixed point the-
orems for multivalued mappings on ordered complete metric spaces. Moreover, as
an application of our main theorem, we give an existence theorem for the solution
of a hyperbolic differential inclusion problem.
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1. Introduction and preliminaries

In 1922, the Polish mathematician Stefan Banach proved a theorem which
ensures, under appropriate conditions, the existence and uniqueness of a fixed point.
His result is called Banach’s fixed point theorem or the Banach contraction principle[1].
Nadler [2] in 1969, proved a set-valued extension of the Banach’s contraction prin-
ciple in complete metric spaces. Afterward many fixed point theorems have been
proved by various authors as generalization of the Nadler’s theorem where the nature
of contractive mapping is weakened along with some additional requirements, see
for instance [3, 4, 5, 6, 7, 8, 9, 10]. Ran and Reurings [11] established the existence
of unique fixed point for the monotone single valued mapping in partially ordered
metric spaces. Their result was further extended in [12, 13, 4, 14, 15, 16, 17]. Re-
cently, V. Pata [18] improve the Banach principal. In fact, Pata extended the Banach
contraction principle with weaker hypotheses than those of the Banach contraction
principle with an explicit estimate of the convergence rate. In this paper, using
the idea of Pata, we prove some fixed point theorems on ordered complete metric
spaces. As an application, we also obtain conditions which guarantee the existence
of a solution for hyperbolic differential inclusions problem.

Let (M,d) be a metric space. Then 2M is the class of all nonempty subsets of
M and for A,B ∈ 2M , let

Hd(A,B) = max{sup
b∈B

d(b, A), sup
a∈A

d(a,B)},
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where

d(a,B) = inf
b∈B

d(a, b),

then Hd is called the Hausdorff-Pompeiu functional induced by d.

Definition 1.1. Let (X,≤) be a partially ordered set and x, y ∈ X. Elements x
and y are said to be comparable elements of X if either x ≤ y or y ≤ x.

Definition 1.2. [19] Let M be a metric space. A subset N ⊂ M is said to be
approximative if the multivalued mapping

zN (x) = {y ∈ N : d(x, y) = d(N, x)}, ∀x ∈M,

has nonempty values.

Definition 1.3. [19] The multivalued mapping T : M → 2M is said to have ap-
proximative values, AV for short, if Tx is approximative for each x ∈M .

Definition 1.4. [19] The multivalued mapping T :M → 2M is said to have compa-
rable approximative values, CAV for short, if T has approximative values and, for
each z ∈M , there exists y ∈ zTz(x) such that y is comparable to z.

Definition 1.5. [19] The multivalued mapping T : M → 2M is said to have upper
comparable approximative values, UCAV, for short(resp.lower comparable approxi-
mative values, LCAV for short) if T has approximative values and, for each z ∈M ,
there exists y ∈ zTz(x) such that y ≥ z(resp.y ≤ z).

Definition 1.6. [19] For two subset X,Y ofM , we denote X ≤r Y if for each x ∈ X
there exists y ∈ Y such that x ≤ y and X ≤ Y if each x ∈ X and each y ∈ Y imply
that x ≤ y.

Definition 1.7. [19] A multivalued mapping T :M → 2M is said to be r-nondecreasing(r-
nonincreasing) if x ≤ y implies that Tx ≤r Ty(Ty ≤r Tx) for all x, y ∈M . T is said
to be r-monotone if T is r-nondecreasing or r-nonincreasing.
The notation of nondecreasing(nonincreasing) is similarly defind by writing ≤ in-
stead of the notation ≤r.

2. Main Results

Let (M,d,≤) be a partial ordered complete metric space. The following hy-
pothesis in M(which appear in [20]) will be applied:

(H1) If {xn} is a non-decreasing(resp. non-increasing) sequence in M such
that xn → x, then xn ≤ x(resp.xn ≥ x) for all n ∈ N.

For a metric space (M,d), Selecting an arbitrary x0 ∈M we denote

∥ x ∥= d(x, x0) for all x ∈M.
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Let ψ : [0, 1] → [0,∞) is an increasing function vanishing with continu-
ity at zero. Also consider the vanishing sequence depending on α ≥ 1, wn(α) =

(
α

n
)α

n∑
k=1

ψ(
α

k
).

Theorem 2.1. Let M be an ordered complete metric space and satisfy (H1). Let
Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be a fixed constants. Suppose that the multivalued map
T :M → 2M has UCAV and the inequality

Hd(Tx, Ty) ≤ (1− ϵ)d(x, y) + Λϵαψ(ϵ)[1 + ∥x∥+ ∥y∥]β, (1)

is satisfied for every ϵ ∈ [0, 1] and for all x, y ∈ M with x and y comparable. Then
T has a fixed point x∗ ∈ Tx∗. Furthermore,

d(x∗, Txn−1) ≤ Kwn(α), (2)

for some positive constant K ≤ Λ(1 + 4∥x ∗ ∥)β.

Proof. Given x0 ∈ M , if x0 ∈ Tx0, proof is complete. Moreover from the fact that
Tx0 has UCAV it follows there exsists x1 ∈ Tx0 with x1 ̸= x0 and x1 ≥ x0 such that

d(x0, x1) = inf
x∈Tx0

d(x, x0) = d(Tx0, x0).

Continuing in this way obtain that, there exists xn+1 ∈ Txn with xn+1 ̸= xn and
xn+1 ≥ xn such that

d(xn, xn+1) = d(Txn, xn), n = 1, 2, . . . .

Moreover,

d(Txn, xn) ≤ sup
x∈Txn−1

d(Txn, x) ≤ Hd(Txn, Txn−1),

therefore,

d(xn, xn+1) ≤ Hd(Txn−1, Txn) for n = 2, 3, . . . .

Furthermore for n = 1, 2, . . . we set

Cn = ∥xn∥ = d(xn, x0).

Since (1) is true for every ε ∈ [0, 1], setting ε = 0, we have the following relations

d(xn+1, xn) ≤ Hd(Txn, Txn−1) ≤ d(xn, xn−1) ≤ Hd(Txn−1, Txn)

≤ d(xn−1, xn)

...

≤ Hd(Tx1, Tx0) ≤ d(x1, x0) = C1.
(3)

By triangle inequality we have

d(xn+1, x0) ≤ d(xn+1, x1) + d(x1, x0), (4)

and

d(xn, x0) ≤ d(xn, xn+1) + d(xn+1, x0). (5)
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Now, using (3), (4) and (5) we have

Cn ≤ d(xn+1, x1) + 2C1 ≤ Hd(Txn, Tx0) + 2C1. (6)

So for α ≥ β, there exist real numbers E,D > 0 such that

Cn ≤ (1− ϵ)Cn + Λϵαψ(ϵ)[1 + Cn]
β + 2C1 ≤ (1− ϵ)Cn + Eϵαψ(ϵ)Cα

n +D. (7)

Accordingly,

εCn ≤ Eεαψ(ε)Cα
n +D,

which holds by hypothesis for any ε ∈ [0, 1] taken for each n ∈ N. If there is
a subsequence Cnk

→ ∞, then the choice εnk
= min(1, 1+D

Cnk
), leads to the following

contradiction

1 ≤ E(1 +D)αψ(εnk
) → 0 as nk → ∞ .

Then the sequence {Cn}∞n=1 is bounded.

Now, we prove that sequence {xn} is Cauchy sequence:

d(xn+m+1, xn+1) ≤ Hd(Txn+m, Txn) ≤ (1−ϵ)d(xn+m, xn)+Λϵαψ(ϵ)[∥xn+m∥+∥xn∥]β.
For fixed m, set

K = sup
n∈N

Λ[1 + 2cn]
β, (8)

and ε = 1− ( n
n+1)

α ≤ α
n+1 . So

(n+ 1)αd(xn+m+1, xn+1) ≤ nαd(xn+m, xn) +Kααψ(
α

n+ 1
).

Setting rn := nαd(xn+m, xn), we have

rn+1 ≤ rn +Kααψ(
α

n+ 1
)

≤ rn−1 +Kααψ(
α

n
) +Kααψ(

α

n+ 1
)

≤ ...

≤ r0 +Kαα
n+1∑
k=1

ψ(
α

k
) = Kαα

n+1∑
k=1

ψ(
α

k
).

Therefore

d(xn+m, xn) ≤ K(
α

n
)α

n∑
k=1

ψ(
α

k
) = Kwn(α). (9)

Taking limits as n→ ∞, we get d(xn+m, xn) → 0. This implies that {xn} is Cauchy
sequence in X. Since X is a complete metric space, there exists x∗ ∈ M such that
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limn→∞ xn = x∗.
Using (9) we have

0 ≤ d(x∗, Txn−1) ≤ d(x∗, xn) = lim
m→∞

d(xn+m, xn) ≤ Kwn(α).

Again

0 ≤ d(x∗, Tx∗) = lim
n→∞

d(xn−1, Tx∗) ≤ lim
n→∞

Hd(Txn, Tx∗)

≤ (1− ϵ)d(xn, x∗) + Λϵαψ(ϵ)[1 + ∥xn∥+ ∥x ∗ ∥]β.

Since the contractive condition (1) holds for any real constant ε ∈ [0, 1], we can
replace ε, for each n ∈ N, by a sequence [0, 1] ∋ εn → 0 as n→ ∞. Then by letting
ε = εn → 0 as n→ ∞, we have

0 ≤ d(x∗, Tx∗) ≤ (1− ϵn)d(xn, x∗) + Λϵαnψ(ϵn)[1 + ∥xn∥+ ∥x ∗ ∥]β → 0.

So d(x∗, Tx∗) = 0 and x∗ ∈ Tx∗.
Also, the convergence rate estimate stated in (2) is achieved from the following
relations

d(x∗, xn) ≤ Hd(Tx∗, Txn−1) ≤ d(x∗, xn−1) ≤ Hd(Tx∗, Txn−2)

≤ d(x∗, xn−2)

...

≤ Hd(Tx∗, Tx0)
≤ d(x∗, x0) = ∥x ∗ ∥,

which implies that

Cn = d(xn, x0) ≤ d(xn, x∗) + d(x∗, x0) ≤ ∥x ∗ ∥+ ∥x ∗ ∥ = 2∥x ∗ ∥.

From the last inequality and (8) we have K ≤ Λ(1 + 4∥x ∗ ∥)β. �

Theorem 2.2. Let M be an ordered complete metric space and satisfy (H1). Let
Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be a fixed constants. Suppose that the multivalued map
T :M → 2M has LCAV and the inequality

Hd(Tx, Ty) ≤ (1− ϵ)d(x, y) + Λϵαψ(ϵ)[1 + ∥x∥+ ∥y∥]β,
is satisfied for every ϵ ∈ [0, 1] and for all x, y ∈ M with x and y comparable. Then
T has a fixed point x∗ ∈ Tx∗. Furthermore,

d(x∗, Txn−1) ≤ Kwn(α),

for some positive constant K ≤ Λ(1 + 4∥x ∗ ∥)β.

Proof. Given x0 ∈ M , if x0 ∈ Tx0, proof is complete. Moreover from the fact that
Tx0 has LCAV it follows there exsists x1 ∈ Tx0 with x1 ̸= x0 and x1 ≤ x0 such that

d(x0, x1) = inf
x∈Tx0

d(x, x0) = d(Tx0, x0).

Continuing in this way obtain that, there exists xn+1 ∈ Txn with xn+1 ̸= xn and
xn+1 ≤ xn such that

d(xn, xn+1) = d(Txn, xn), n = 1, 2, . . . .
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Moreover,
d(Txn, xn) ≤ sup

x∈Txn−1

d(Txn, x) ≤ Hd(Txn, Txn−1),

therefore,
d(xn, xn+1) ≤ Hd(Txn−1, Txn) for n = 2, 3, . . . .

Furthermore for n = 1, 2, . . . we set

Cn = ∥xn∥ = d(xn, x0).

Since (1) is true for every ε ∈ [0, 1], setting ε = 0, we have the following relations

d(xn+1, xn) ≤ Hd(Txn, Txn−1) ≤ d(xn, xn−1) ≤ Hd(Txn−1, Txn)

≤ d(xn−1, xn)

...

≤ Hd(Tx1, Tx0) ≤ d(x1, x0) = C1.
(10)

By triangle inequality we have

d(xn+1, x0) ≤ d(xn+1, x1) + d(x1, x0), (11)

and

d(xn, x0) ≤ d(xn, xn+1) + d(xn+1, x0). (12)

Now, using (10), (11) and (12) we have

Cn ≤ d(xn+1, x1) + 2C1 ≤ Hd(Txn, Tx0) + 2C1. (13)

So for α ≥ β, there exist real numbers E,D > 0 such that

Cn ≤ (1− ϵ)Cn + Λϵαψ(ϵ)[1 + Cn]
β + 2C1 ≤ (1− ϵ)Cn + Eϵαψ(ϵ)Cα

n +D. (14)

Accordingly,

εCn ≤ Eεαψ(ε)Cα
n +D,

which holds by hypothesis for any ε ∈ [0, 1] taken for each n ∈ N. If there is
a subsequence Cnk

→ ∞, then the choice εnk
= min(1, 1+D

Cnk
), leads to the following

contradiction

1 ≤ E(1 +D)αψ(εnk
) → 0 as nk → ∞ .

Then the sequence {Cn}∞n=1 is bounded.

Now, we prove that sequence {xn} is Cauchy sequence:

d(xn+m+1, xn+1) ≤ Hd(Txn+m, Txn) ≤ (1−ϵ)d(xn+m, xn)+Λϵαψ(ϵ)[∥xn+m∥+∥xn∥]β.
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For fixed m, set

K = sup
n∈N

Λ[1 + 2cn]
β, (15)

and ε = 1− ( n
n+1)

α ≤ α
n+1 . So

(n+ 1)αd(xn+m+1, xn+1) ≤ nαd(xn+m, xn) +Kααψ(
α

n+ 1
).

Setting rn := nαd(xn+m, xn), we have

rn+1 ≤ rn +Kααψ(
α

n+ 1
)

≤ rn−1 +Kααψ(
α

n
) +Kααψ(

α

n+ 1
)

≤ ...

≤ r0 +Kαα
n+1∑
k=1

ψ(
α

k
) = Kαα

n+1∑
k=1

ψ(
α

k
).

Therefore

d(xn+m, xn) ≤ K(
α

n
)α

n∑
k=1

ψ(
α

k
) = Kwn(α). (16)

Taking limits as n→ ∞, we get d(xn+m, xn) → 0. This implies that {xn} is Cauchy
sequence in X. Since X is a complete metric space, there exists x∗ ∈ M such that
limn→∞ xn = x∗.
Using (16) we have

0 ≤ d(x∗, Txn−1) ≤ d(x∗, xn) = lim
m→∞

d(xn+m, xn) ≤ Kwn(α).

Again

0 ≤ d(x∗, Tx∗) = lim
n→∞

d(xn−1, Tx∗) ≤ lim
n→∞

Hd(Txn, Tx∗)

≤ (1− ϵ)d(xn, x∗) + Λϵαψ(ϵ)[1 + ∥xn∥+ ∥x ∗ ∥]β.

Since the contractive condition (1) holds for any real constant ε ∈ [0, 1], we can
replace ε, for each n ∈ N, by a sequence [0, 1] ∋ εn → 0 as n→ ∞. Then by letting
ε = εn → 0 as n→ ∞, we have

0 ≤ d(x∗, Tx∗) ≤ (1− ϵn)d(xn, x∗) + Λϵαnψ(ϵn)[1 + ∥xn∥+ ∥x ∗ ∥]β → 0.

So d(x∗, Tx∗) = 0 and x∗ ∈ Tx∗.
Also, the convergence rate estimate stated in (2) is achieved from the following
relations

d(x∗, xn) ≤ Hd(Tx∗, Txn−1) ≤ d(x∗, xn−1) ≤ Hd(Tx∗, Txn−2)

≤ d(x∗, xn−2)

...

≤ Hd(Tx∗, Tx0)
≤ d(x∗, x0) = ∥x ∗ ∥,
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which implies that

Cn = d(xn, x0) ≤ d(xn, x∗) + d(x∗, x0) ≤ ∥x ∗ ∥+ ∥x ∗ ∥ = 2∥x ∗ ∥.

From the last inequality and (15) we have K ≤ Λ(1 + 4∥x ∗ ∥)β. �

Theorem 2.3. Let M be an ordered complete metric space and satisfy (H1). Let
Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be a fixed constants. Suppose that the multivalued map
T :M → 2M has AV, is non-decreasing and the inequality

Hd(Tx, Ty) ≤ (1− ϵ)d(x, y) + Λϵαψ(ϵ)[1 + ∥x∥+ ∥y∥]β,

is satisfied for every ϵ ∈ [0, 1] and for all x, y ∈ M with x and y comparable. If
there exists x0 ∈ M such that {x0} ≤ Tx0, then T has a fixed point x∗ ∈ Tx∗.
Furthermore,

d(x∗, Txn−1) ≤ Kwn(α),

for some positive constant K ≤ Λ(1 + 4∥x ∗ ∥)β.

Proof. The first by using hypothesis of this theorem, we construct sequence {xn}. If
x0 ∈ Tx0, proof is complete. Moreover, according hypothesis, for any x ∈ Tx0, we
have x ≥ x0. Since T has AV , there exists x1 ∈ Tx0 with x1 ≥ x0 and d(x0, x1) =
d(Tx0, x0). Continuing in this way obtain that, there exists xn+1 ∈ Txn with
xn+1 ̸= xn and xn+1 ≥ xn such that

d(xn, xn+1) = d(Txn, xn), n = 1, 2, . . . .

Moreover,

d(Txn, xn) ≤ sup
x∈Txn−1

d(Txn, x) ≤ Hd(Txn, Txn−1),

therefore,

d(xn, xn+1) ≤ Hd(Txn−1, Txn) for n = 2, 3, . . . .

Furthermore for n = 1, 2, . . . we set

Cn = ∥xn∥ = d(xn, x0).

Since (1) is true for every ε ∈ [0, 1], setting ε = 0, we have the following relations

d(xn+1, xn) ≤ Hd(Txn, Txn−1) ≤ d(xn, xn−1) ≤ Hd(Txn−1, Txn)

≤ d(xn−1, xn)

...

≤ Hd(Tx1, Tx0) ≤ d(x1, x0) = C1.
(17)

By triangle inequality we have

d(xn+1, x0) ≤ d(xn+1, x1) + d(x1, x0), (18)

and

d(xn, x0) ≤ d(xn, xn+1) + d(xn+1, x0). (19)
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Now, using (17), (18) and (19) we have

Cn ≤ d(xn+1, x1) + 2C1 ≤ Hd(Txn, Tx0) + 2C1. (20)

So for α ≥ β, there exist real numbers E,D > 0 such that

Cn ≤ (1− ϵ)Cn + Λϵαψ(ϵ)[1 + Cn]
β + 2C1 ≤ (1− ϵ)Cn + Eϵαψ(ϵ)Cα

n +D. (21)

Accordingly,

εCn ≤ Eεαψ(ε)Cα
n +D,

which holds by hypothesis for any ε ∈ [0, 1] taken for each n ∈ N. If there is
a subsequence Cnk

→ ∞, then the choice εnk
= min(1, 1+D

Cnk
), leads to the following

contradiction

1 ≤ E(1 +D)αψ(εnk
) → 0 as nk → ∞ .

Then the sequence {Cn}∞n=1 is bounded.

Now, we prove that sequence {xn} is Cauchy sequence:

d(xn+m+1, xn+1) ≤ Hd(Txn+m, Txn) ≤ (1−ϵ)d(xn+m, xn)+Λϵαψ(ϵ)[∥xn+m∥+∥xn∥]β.
For fixed m, set

K = sup
n∈N

Λ[1 + 2cn]
β, (22)

and ε = 1− ( n
n+1)

α ≤ α
n+1 . So

(n+ 1)αd(xn+m+1, xn+1) ≤ nαd(xn+m, xn) +Kααψ(
α

n+ 1
).

Setting rn := nαd(xn+m, xn), we have

rn+1 ≤ rn +Kααψ(
α

n+ 1
)

≤ rn−1 +Kααψ(
α

n
) +Kααψ(

α

n+ 1
)

≤ ...

≤ r0 +Kαα
n+1∑
k=1

ψ(
α

k
) = Kαα

n+1∑
k=1

ψ(
α

k
).

Therefore

d(xn+m, xn) ≤ K(
α

n
)α

n∑
k=1

ψ(
α

k
) = Kwn(α). (23)

Taking limits as n→ ∞, we get d(xn+m, xn) → 0. This implies that {xn} is Cauchy
sequence in X. Since X is a complete metric space, there exists x∗ ∈ M such that
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limn→∞ xn = x∗.
Using (23) we have

0 ≤ d(x∗, Txn−1) ≤ d(x∗, xn) = lim
m→∞

d(xn+m, xn) ≤ Kwn(α).

Again

0 ≤ d(x∗, Tx∗) = lim
n→∞

d(xn−1, Tx∗) ≤ lim
n→∞

Hd(Txn, Tx∗)

≤ (1− ϵ)d(xn, x∗) + Λϵαψ(ϵ)[1 + ∥xn∥+ ∥x ∗ ∥]β.

Since the contractive condition (1) holds for any real constant ε ∈ [0, 1], we can
replace ε, for each n ∈ N, by a sequence [0, 1] ∋ εn → 0 as n→ ∞. Then by letting
ε = εn → 0 as n→ ∞, we have

0 ≤ d(x∗, Tx∗) ≤ (1− ϵn)d(xn, x∗) + Λϵαnψ(ϵn)[1 + ∥xn∥+ ∥x ∗ ∥]β → 0.

So d(x∗, Tx∗) = 0 and x∗ ∈ Tx∗.
Also, the convergence rate estimate stated in (2) is achieved from the following
relations

d(x∗, xn) ≤ Hd(Tx∗, Txn−1) ≤ d(x∗, xn−1) ≤ Hd(Tx∗, Txn−2)

≤ d(x∗, xn−2)

...

≤ Hd(Tx∗, Tx0)
≤ d(x∗, x0) = ∥x ∗ ∥,

which implies that

Cn = d(xn, x0) ≤ d(xn, x∗) + d(x∗, x0) ≤ ∥x ∗ ∥+ ∥x ∗ ∥ = 2∥x ∗ ∥.

From the last inequality and (22) we have K ≤ Λ(1 + 4∥x ∗ ∥)β. �

3. Applications

In this section, as an application of the result of previous section, is concerned
with the existence of solutions for hyperbolic differential inclusions

∂2u(t, x)

∂t∂x
∈ F (t, x, u(t, x)) a.e.(t, x) ∈ Ja × Jb,

u(t, 0) = ξ(t), u(0, x) = η(x), t ∈ Ja, x ∈ Jb,
(24)

where Ja = [0, a], Jb = [0, b] , F : Ja×Jb×R → 2R is multivalued mapping satisfying
some hypotheses which will be specified later, ξ ∈ C(Ja,R) , η ∈ C(Jb,R). In the
present section, we will prove the existence of solutions for problem (24) based on
Theorems 2.1. First of all, we introduce notations which are used throughout this
section. C(Ja × Jb,R) is the Banach space consisting of all continuous functions
from Ja × Jb into R with the norm

||u|| = sup{|u(t, x)| : (t, x) ∈ Ja × Jb} for u ∈ C(Ja × Jb,R).
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For u, v ∈ C(Ja × Jb,R) we define that u ≤ v if and only if u(t, x) ≤ v(t, x) for each
(t, x) ∈ Ja × Jb. Let P = {u : u ∈ C(Ja × Jb,R), u ≥ 0} and

H = {u ∈ C(Ja × Jb,R) :
∂2u

∂t∂x
exists for each (t, x) ∈ Ja × Jb}.

L1(Ja× Jb,R) stands for the Banach space consisting of measurable functions
u : Ja × Jb → R which are Lebesgue integrable normed by

||u||L =

∫ a

0

∫ b

0
|u(t, x)|dxdt for u ∈ L1(Ja × Jb,R).

Let M : Ja × Jb × R → 2R be a multivalued map with nonempty values. For each
u ∈ C(Ja × Jb,R) define the set of selections of M by

SM,u = {v ∈ L1(Ja × Jb,R) : v(t, x) ∈ M(t, x, u(t, x)) a.e. (t, x) ∈ Ja × Jb},

and assign to M the multivalued operator M : C(Ja × Jb,R) → 2L
1(Ja×Jb,R) by

letting

M(u) = {w ∈ L1(Ja × Jb,R) : w(t, x) ∈ M(t, x, u(t, x)), (t, x) ∈ Ja × Jb}.
The operator M is called the Niemytsky operator associated with M in the light of
some of the current literature. In order to state and verify our results, we need the
continuous map L : L1(Ja × Jb,R) → C(Ja × Jb,R) defined by

Lu(t, x) =

∫ t

0

∫ x

0
u(s, τ)dsdτ.

As an application of results included in Theorem 2.1, we first unify the follow-
ing

Theorem 3.1. Suppose that the multivalued function F : Ja×Jb×R → 2R satisfies
the following conditions:
(L1) F (t, x, u) is compact subset for all (t, x, u) ∈ Ja×Jb×C(Ja×Jb,R). Moreover,
SF,u is nonempty for each u ∈ C(Ja × Jb,R).
(L2) For any u, v ∈ C(Ja × Jb,R), if u, v are comparable then

Hd(F (t, x, u(t, x)), F (t, x, v(t, x))) ≤ |ℓ(t, x)|2|u(t, x)− v(t, x)|,
for almost each (t, x) ∈ Ja × Jb, where ℓ ∈ L1(Ja × Jb,R) with ||ℓ||L ≤ 1.
(L3) For each u ∈ C(Ja × Jb,R) one has
{u(t, x)− ξ(t)− η(x) + ξ(0)} ≤ Lv(t, x) for (t, x) ∈ Ja × Jb and v ∈ SF,u. Then the
problem (24) has at least a solution u∗ ∈ C(Ja × Jb,R).

Proof. Let M ⊂ C(Ja × Jb,R) be a complete metric space. Then M satisfies the
condition (H1). It is clear that problem (24) is equivalent to the integral inclusion

u(t, x) ∈
{
h ∈ C(Ja×Jb,R) : h(t, x) = ξ(t)+η(x)−ξ(0)+

∫ t

0

∫ x

0
v(s, τ)dsdτ, v ∈ SF,u

}
.

Define the multivalued map A :M → 2M by

(Au)(t, x) = {h ∈ C(Ja × Jb,R) : h(t, x) = ξ(t) + η(x)− ξ(0) + Lv(t, x), v ∈ SF,u}.
Clearly, the multivalued map A is well defined on in view of hypothesis (L1). We
shall show that A satisfy all conditions of Theorem 2.1. We first show that A
has compact values. It then suffices to prove that the composition map LoSF has
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compact values. Let u ∈ C(Ja × Jb,R) be arbitrary and let {un} be a sequence
in SF,u. Then by the definition of SF,u, un(t, x) ∈ F (t, x, u(t, x)) a.e for all (t, x) ∈
Ja × Jb. Since F (t, x, u(t, x)) is compact, there exists a convergent subsequence
of {un(t, x)} (without loss of generality, we may assume it is {un(t, x)} itself) that
converges in measure to some v(t, x) ∈ F (t, x, u(t, x)) a.e for (t, x) ∈ Ja×Jb. Now the
continuity of L guarantees that Lun(t, x) → Lv(t, x) pointwise on Ja × Jb provided
n→ ∞. We shall prove that the convergence is uniform. To this end, we show that
{Lun} is an equicontinuous sequence. Let t1, t2 ∈ Ja with t1 < t2 and x1, x2 ∈ Jb
with x1 < x2, then

|Lun(t2, x2)− Lun(t1, x1)| ≤
∣∣∣ ∫ t2

0

∫ x2

0
un(s, τ)dsdτ −

∫ t1

0

∫ x1

0
un(s, τ)dsdτ

∣∣∣
≤

∫ t1

0

∫ x2

x1

|un(s, τ)|dsdτ +
∫ t2

t1

∫ x2

0
|un(s, τ)|dsdτ.

Note that un ∈ L1(Ja × Jb,R), we infer that the right-hand side of the above ex-
pression tends to zero as t2 → t1 and x2 → x1. Hence, {Lun} is equicontinuous and
has a uniformly convergent subsequence by virtue of Arzela-Ascoli theorem. Obvi-
ously, this convergence is Lv and Lv ∈ LoSF,u. This shows that LoSF,u is compact.
Therefore, A has compact values. As a result of this and (L3), we obtain that A has
UCAV . Next we show that A satisfies relation (1) . Let u, v ∈ K are comparable,
say, u ≤ v. Let h1 ∈ Au. Then there exists v1 ∈ SF,u such that

h1(t, x) = ξ(t) + η(x)− ξ(0) +

∫ t

0

∫ x

0
v1(s, τ)dsdτ for (t, x) ∈ Ja × Jb.

From (L2) there exists w ∈ F (t, x, v(t, x)) such that

|v1(t, x)− w| ≤ |ℓ(t, x)|2(v(t, x)− u(t, x)).

Define the multivalued map U by

U(t, x) = {w ∈ R : |v1(t, x)− w| ≤ |ℓ(t, x)|2(v(t, x)− u(t, x))}.

Then the multivalued map V (t, x) = U(t, x) ∩ SF,v has nonempty values and is
measurable (see [21]). Then there exists a function v2 which is a measurable selection
for V . Clearly, v2(t, x) ∈ F (t, x, v(t, x)) for each (t, x) ∈ Ja × Jb satisfying

|v1(t, x)− v2(t, x)| ≤ |ℓ(t, x)|2(v(t, x)− u(t, x)).

Let us define for each (t, x) ∈ Ja × Jb,

h2(t, x) = ξ(t) + η(x)− ξ(0) +

∫ t

0

∫ x

0
v2(s, τ)dsdτ.

It follows that h2 ∈ Av and

|h2(t, x)− h1(t, x)| ≤
∫ t

0

∫ x

0
|v2(s, τ)− v1(s, τ)|dsdτ.
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Thus, we have

∥h2 − h1∥ ≤ ∥ℓ∥2L∥v − u∥
≤ ∥ℓ∥2L∥v − u∥+ ∥ℓ∥L∥v − u∥
= ∥ℓ∥L∥v − u∥ − ∥ℓ∥2L∥v − u∥+ 2∥ℓ∥2L∥v − u∥
= ∥ℓ∥L∥v − u∥(1− ∥ℓ∥L) + 2∥ℓ∥2L∥v − u∥
≤ (1− ∥ℓ∥L)∥v − u∥+ 2∥ℓ∥2L[1 + ∥u∥+ ∥v∥].

Put ψ(∥ℓ∥L) = ∥ℓ∥L, α = 1, Λ = 2 and β = 1. Then we have

∥h2 − h1∥ ≤ (1− ∥ℓ∥L)d(u, v) + Λ∥ℓ∥αLψ(∥ℓ∥L)[1 + ∥u∥+ ∥v∥]β.

By an analogous relation, obtained by interchanging the roles of u and v, it follows
that

Hd(Au,Av) ≤ (1− ∥ℓ∥L)d(u, v) + Λ∥ℓ∥αLψ(∥ℓ∥L)[1 + ∥u∥+ ∥v∥]β.

Therefore, A satisfies Theorem 2.1 with respect to ψ(ϵ) = ϵ, α = 1, Λ = 2 and
β = 1. Now Theorem 2.1 guarantees that (24) has a desired solution and this proof
is completed. �
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