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A DEEP LEARNING MODEL FEATURE 

INTERPRETABILITY ANALYSIS METHOD FOR POWER 

SYSTEM TRANSIENT STABILITY ASSESSMENT 

Yibo ZHOU1,*, Liang ZHANG2  

The mechanism underlying power system transient stability is complex. Deep 

learning models offer an effective solution for capturing complex mapping 

relationships, making them widely employed in transient stability assessment. 

However, the deep learning models face challenges in ensuring the effectiveness of 

feature extraction due to the lack of domain knowledge support. This limitation 

hampers improvements in evaluation accuracy. Furthermore, the inability to 

comprehend the acquired knowledge of the model raises concerns about trusting 

evaluation results, especially in security-sensitive scenarios. To address these issues, 

this article proposes a method for analyzing the interpretability of deep learning 

model features in power system transient stability assessment. Firstly, we construct a 

CNN model specifically designed for transient stability assessment. Then, we 

introduce a global interpretation method known as maximizing activation (AM) to 

obtain a comprehensive interpretation of typical stable modes within the model's 

injection space. Finally, the Class Activation Map (Grad-CAM) is utilized to identify 

dominant features in the injection space, providing guidance for the online 

application of transient stability assessment. The case studies show that this method 

can make operators easily understand the transient stability assessment knowledge 

learned by neural networks and improve the accuracy of transient stability assessment 

under the security region. 

Keywords: transient stability assessment; deep learning model, feature 

interpretability analysis; stability pattern recognition. 

1. Introduction 

The machine learning (ML) method can realize end-to-end learning without 

manual feature extraction, such as deep neural network (DNN). This dramatically 

simplifies the dependence on expert knowledge and feature engineering. Therefore, 

DL has become one of the current common methods for solving complex 

classification, and regression problems [1]. 
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With the increase in the level of the deep neural network, the gradually 

abstracted features make it difficult for humans to understand. Therefore, DNN is 

usually regarded as a "black box", and the model’s performance judges the 

availability requirements. Sometimes, models that are difficult to be explained by 

human knowledge show significant differences in some scenarios. At this time, no 

apparent reason can be provided [2]. Therefore, this seriously restricts the 

widespread application of the DNN model in engineering. It is essential to study 

the interpretability of the DNN model. 

There are mainly two ways to improve the interpretability of deep learning 

models at home and abroad: 1) combining human knowledge and feature 

visualization methods, explaining the key features of model extraction and 

recognition; 2) The attention mechanism is introduced to get the attention of the 

model to some features, to judge which input features are the dominant features. 

Reference [3] got the gradient of the network output relative to the input through 

the back-propagation algorithm. Then, saliency maps corresponding to the input are 

constructed to highlight important parts of the input samples. The deconvolution 

network reconstructs the feature map with the same dimension as the input sample 

[4]. This identifies pixels and regions that are significantly activated in the input 

picture. Reference [5] searched for the input mode of the bounded norm for the 

model and activated the selected remote unit to the maximum extent. The 

visualization of the calculation content of the team is realized in the input space. It 

helps people understand the special meaning of different neurons. The class 

activation map (CAM) method replaces the complete connection layer in CNN with 

the global average pooling layer [6]. By projecting the weight of the output layer to 

the convolution feature map, the core image region related to the label is identified. 

Then, the input samples' important regions with class discriminability are located. 

Reference [7] proposed a gradient weighted class activation map method (Grad-

CAM). It can be used for any CNN model, and the calculation amount becomes 

smaller. The above methods provide a new way to improve the interpretability of 

DNN. 

As we all know, power system transient stability assessment is a typical 

complex correlation map problem. It is difficult to build a map relationship between 

input features and system transient stability. Much work has been done on this issue. 

Reference [8] uses the generator active output, load active power, key line active 

power and other steady-state feature as inputs to build a CNN model. It realizes the 

stability evaluation of high accuracy, low misjudgment and low leakage. Reference 

[9] used trajectory analysis to build instability indicators, and used CNN to 

construct a composite neural network. Furthermore, the map relationship between 

the steady-state information of the system and the generator stability metrics is 

quantitatively described. This shows that DNN can effectively nonlinearly correlate 

the system's high-dimensional feature with the stability. However, when applied to 
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the DNN model of the power system TSA, the input samples are non-picture 

structures. This leads to the problem that the samples could be easier to understand 

intuitively. Reference [10] quantized the impact of input feature DT-based transient 

voltage stability model assessment results by SHAP index. To some extent, it 

explains the evaluation results of the model for each sample. Reference [11] 

obtained the input feature heat map using the Guided Grad-CAM algorithm and 

1D-CNN model. It is found that node voltage has a more significant influence on 

TSA results than line power flow. These research results can provide new ideas for 

revealing the mechanism of transient stability. 

In the face of a model with nonlinear solid fitting ability, it is essential to 

understand its internal working principle and turn it into a "gray box" or even a 

"white box". Enhancing the interpretability of the DNN classification model can be 

divided into the following two parts: one is to strengthen the understanding of input 

samples, and the other is to understand the extracted features of the model. The 

recognition and enhancement of DNN model features can enhance the knowledge 

of the weight of each layer of the model and improve trust in the model. It can also 

help engineers and technicians improve the model's structure and parameters and 

promote the popularization of deep network model in practical projects. 

Under the background that deep neural network has achieved excellent 

results, aiming at the problem of poor interpretability of the model, this article 

adopts a DNN feature recognition method. Taking the CNN model as an example, 

we use the Grad-CAM algorithm to recognize and locate the features of the CNN 

model. It directed CNN to find the specific location of key data in the sample. Then, 

the activation maximization (AM) algorithm is used to construct sample features to 

explain the model. At the same time, a new input sample construction method is 

proposed. The training samples of CNN are constructed in the form of geographical 

wiring diagram, which enhances the readability of sample data and facilitates the 

visualization of features. Finally, the effectiveness and feasibility of this method are 

verified in the IEEE-39 system.  

2. Feature Interpretability Analysis Method 

The so-called interpretability refers to the ability to display in a human-

understandable way. The core is how to understand the relationship between the 

feature of input samples and the output. Visualizing the components extracted from 

CNN models has become an effective tool to reveal the differences between CNN 

and human recognition. The feature information extracted from the trained CNN 

model implies the convolution kernel weight. The weights are difficult to 

understand, while the original sample features are understandable. Therefore, the 

components extracted by CNN from samples can be reconstructed under the actual 

sample dimensions using appropriate algorithms, and the regions where the main 
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features exist can be pointed out. This section will introduce two interpretable 

methods: feature recognition and feature enhancement algorithms. 

2.1 Grad-CAM 

The samples are input into a CNN model, and the time for the model to 

make judgments is very short and the accuracy meets the expectation. The operator 

wants to know what information CNN "sees" in the input sample during this process 

before making a corresponding judgment. To solve this problem, the Grad-CAM 

method can explain better. 

Grad-CAM comes from improving CAM. CAM changes the fully connected 

layer to global average pooling (GAP) layer. Then CNN can provide a feature map 

for corresponding sample categories. The map  weight to the corresponding 

category is   in Fig. 1. By taking out the graph corresponding to the category, 

and then weighting and summing its corresponding feature graph, the final output 

is a class activation map. CAM can find features related to output classes. The larger 

the value of each point in map, the higher the attention of model to corresponding 

area. Finally, the location information of the features concerned by the model can 

be obtained. 

GAP

Label 1

Label 2

Label 3

...

Label i

...

Label n
 

 

Fig. 1. CAM Schematic diagram 

CAM needs to change the model structure and retrain it. This is time-

consuming and laborious in practice. Therefore, Grad-CAM improved CAM. The 

result calculated is identical to that of the original CAM, as shown in (1). 
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Where  is the number of pixels;  is the score of category c;  is the k-th 

feature map;  is the value in the  position;  is the calculated CAM of the 

category c. At the same time, the score  after softmax is related to all categories. 

If only the gradient is calculated, it is assigned to the corresponding position 

after taking the absolute value. The result is also called a saliency map. It can 

indicate which small changes of data in the input sample can have a more significant 

impact on the CNN output score, that is, which data CNN is sensitive to. 

The training process of Grad-CAM needs to be included. In addition, the 

results of the Grad-CAM output are guided by labels. For the same sample, different 

labels can make CNN view the original sample at various locations, while the 

saliency map does not have this feature. 

Grad-CAM can show which part of the input sample CNN sees before 

making the corresponding prediction. It can check whether CNN pays attention to 

the correct area in the input sample. This method has achieved remarkable results 

in the field of image recognition. 

2.2 Activation Maximization 

It is challenging to analyze the interpretability of CNN by reducing the 

dimension of high-dimensional information in the convolution kernel. Therefore, a 

new method is used to visualize features, namely activation maximization. It can 

visualize the optimal input of each layer of neurons. The optimal input is the input 

sample that can make the activation value of the model output larger. "The 

activation value should be as high as possible" can be interpreted as "the most 

likely" for the layer. As a result, the optimal input could reveal which features the 

chosen neuron might have understood. The idea of AM is very intuitive. For a 

trained network, the optimal input can display the CNN extracted features in the 

dimension of input samples. This feature display is not achieved by dimensionality 

reduction of high-dimensional features, which avoids the dimensionality reduction 

process of high-dimensional features. Instead, a "most expected" input sample of 

CNN is gradually generated through iterative training. In this input sample, features 

must be extracted by the network, and the objective function: 
*

,arg max ( , )i l
x

x a x=                                            (3) 

The training process of AM: 

(1) Create an initial input sample of random numbers and feed it into CNN, 

and forward propagation be done. 

(2) Utilize backpropagation to determine the gradient  of the active 

value relative to the input. 



310                                                         Yibo Zhou, Liang Zhang  

 

(3) Update input:                                                              
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Where  is the learning rate.  

(4) Repeat steps (1), (2) and (3) until there is no noise data in the input or 

the maximum amount of iterations is completed. 

According to the iteration process of AM, we can infer that while presenting 

the characteristics, AM also somewhat enlarges them. This is so that the iterative 

process' objective of maximizing the activation value can be achieved, and some 

feature in the original sample makes the activation size of the feature map smaller 

than the maximum activation value. A higher activation value indicates that the 

sample's features are far more noticeable. 

Generally, a convolutional neural network with deep structure has 

convolution, pooling, full connection layer and output layer. The full connection 

layer contains information related to all categories, which is difficult for humans to 

understand and visualize. For different CNN output results, we want to know what 

kind of samples CNN "most expects" to input. Therefore, this method is applied to 

the output layer of CNN (before softmax), which may give a reasonable explanation 

to the classification results of convolutional neural networks. 

Then, the iterative training's objective function changes when the output 

layer is used: 
2

2arg max ( )c
x

S x x− ‖‖                                            (5) 

Where  is the score of category c; To guarantee that the final result is as 

similar to the original sample as feasible without becoming overly abstract and 

challenging to understand, regularization parameter   is used. The reason for 

taking the score before softmax is that the maximum score after softmax may be 

achieved by minimizing the score of other categories, so focus on  to verify 

that category c is the only optimization target for all efforts and have nothing to do 

with other categories. Regularization parameters are introduced to govern the 

output, thereby making the final output more natural because of results acquired by 

using this method to deepen CNN will be more abstract and challenging to 

comprehend. 

In addition, an initial image can be selected to replace the sample initialized 

by noise data initially set by the algorithm. In this way, the initial sample can be 

used as a guide to add features learned by the CNN model. If the initial image is 

completely irrelevant to the content learned by CNN, the original image will be 

given new features. This process is often used as style transfer in the field of image 

recognition, that is, to convert the image from the original style to another style, 

while ensuring that the main content of the image does not change. 
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In actuality, for the convolutional neural network-based transient stability 

assessment model, AM is used to produce a sample that CNN considers the most 

"stable" and the most "unstable". And depending on the colors shown in the sample 

pictures, we can find the feature of the system trend. This can provide great help 

for the power system TSA. 

3. Sample Construction Method for Improving Model Interpretability 

As we all know, the construction of input information matrix has a 

significant impact on the model’s performance. For power system transient stability 

analysis, the power flow before failure reflects the power operating point and offers 

extensive data on transient stability. Therefore, for the CNN model adopted in this 

article, the power flow data is selected to construct the CNN input samples. 

3.1 Construction of input sample matrix based on node connection 

relationship 

Table 1 

Feature Variables in Power Flow Information 

Variable types Electrical parameters 

Generator active power output , reactive power output  

Load active power ,reactive power   

Line/Transformer 
Head end power 、  

voltage angle difference at two ends of the branch.  

Node node voltage amplitude , voltage phase-angle   

For a power system with N nodes, the sample matrix can be constructed 

from the power flow information in the form of an admittance matrix. The row and 

column labels of the matrix correspond to the node number one by one. Information 

about nodes is represented by the matrix's primary diagonal elements, while the 

upper and lower triangular elements represent branch information. Different 

electrical parameters can be respectively constructed into admittance like matrices 

and stacked into three-dimensional matrices. The feature variables included in the 

power flow information are shown in Table 1. 

The power flow information mainly includes active power, reactive power 

and voltage, so the dimension of sample matrix F is N * N * 3. The specific 

construction method is shown below. 

1. The active power injected by each system bus is represented by the 

matrix's first layer and the active power transmitted by branches.  

Load ( , ,1) 1,2, ,Gi iF i i P P i N= − =                                             (6) 

Line ( , )( , ,1) , 1,2, ,i jF i j P i j N i j= =                                        (7) 
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Where  represents the active power at the head end of the branch connecting 

node i and j, and the node with a small number is the head end. 

2. The second layer of the matrix represents the reactive power injected by 

each node of the system and the reactive power transmitted by branches.  

Loadi ( , ,2) 1,2, ,Gi iF i i Q Q i N= − =                                          (8) 

Line ( , )( , , 2) , 1, 2, ,i jF i j Q i j N i j= =                                     (9) 

Where  represents the reactive power at the head end of the branch 

connecting node i and j, and the node with a small number is the head end. 

3. The third layer of the matrix represents the bus voltage amplitude and the 

voltage angle difference at two ends of the branch. 

( , ,3) 1,2, ,miF i i U i N= =                                             (10) 

( , ,3) , 1, 2, ,ijF i j i j N i j=  =                                 (11) 

The input sample data generated by the above method contains almost all 

the power flow information. The network topology is hidden in the data, and the 

data is complete and the physical meaning is clear. It is also clearly separable in 

computer vision, which facilitates CNN to select data and extract features. 

However, we will find that more data in the samples constructed in this way are 

concentrated near the main diagonal, and the data is relatively dense. This makes it 

more difficult for people to understand the sample and analyze the interpretability 

of the CNN model. Therefore, we need a convenient sample construction method 

for CNN interpretability analysis. 

3.2 Sample matrix construction method based on geographical wiring 

diagram 

A sample building technique based on the geographical wiring diagram is 

suggested in order to use CNN's image recognition capabilities and to simplify the 

interpretability study. An RGB image serves as a representation of each power flow 

sample (3D matrix), in which circles are used to represent node and branches. The 

power flow information is entered with in diagram based on such a system wiring 

design. The pixel value of each channel is [0, 255].  is the pixel value of each 

channel of the node, and  is the pixel value of the branch. Since the picture pixel 

contains R, G, and B channels, the following method is used to convert the power 

flow data to the pixel value. 

1. The active power that node i injects and branch j transmits is known as 

the R channel. 

Load Line Ni Gi i Lj jC P P C P= − =                               (12) 

2. The reactive power that node i injects and branch j transmits is known as 

the G channel. 
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Load Line Ni Gi i Lj jC Q Q C Q= − =                               (13) 

3. The voltage amplitude at node i and the phase angle difference between 

two ends of branch j are both represented by the B channel. 

Ni mi Lj jC U C = =                                (14) 

4. Normalize the above converted values to [0,255]. 

( )min

max min

255
C C C

C C

 =  −
−

                              (15) 

Where  is the normalized pixel value,  is the non normalized pixel value, and 

 and  are the maximum and minimum values of the same category 

variable (  or ) respectively. 

To simplify the interpretation process, reducing the number of variables can 

be beneficial for stable labels. Hence, a single fault is selected as the fault set, with 

the category, location, and time of each sample remaining unchanged. In this 

scenario, the stability label is determined based on whether the system transient is 

stable or not. In this way, each sample is drawn as an RGB image. With the help of 

this sample creation technique, features can be visualized and their interpretability 

can be examined after the information in the system topology has been fully 

displayed. A topological diagram illustrating the relative positions of the network 

nodes is depicted in Fig. 2. 

 
Fig. 2. System node label comparison 

 

 

4. Case Studies 

The IEEE-39 system is used to evaluate the performance of the proposed 

model. Simulation experiments are performed in PSASP. The generators are the 2th 

order model and the loads are the constant impedance model. The fault is set to a 

three-phase short circuit, assumed to occur on bus 18 and cleared after lasting 0.1s. 

All the loads are set between 80% and 120% of the original load levels, respectively 

and the power of generations is also scaled in the same proportion. The total 
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simulation time is 5s. The system’s topology does not change before and after the 

short circuit. A total of 11421 samples are obtained from simulation, of which 7845 

are stable and 3576 are unstable. The training set and testing set are randomly 

divided according to the ratio of 4:1. The deep neural network model is built based 

on the PyTorch 2.0 framework. The structure of the model, as well as the detailed 

parameters of the convolutional layers and pooling layers, are depicted in Fig. 3. 
Power flow data

Conv (7,8)Relu

MaxPooling (4,1)

Conv (5,8)Relu

MaxPooling (2,2)

Conv (5,16)Relu MaxPooling (2,1)

Conv (5,32)Relu

MaxPooling (2,2)

Conv (5,64)Relu

MaxPooling (2,2)

Conv (5,8)Relu MaxPooling (2,2)

Dropout 0.4

FullyConnected 2

Output layer

 
Fig. 3. Transient stability evaluation model based on convolutional neural networks 

The training set is utilized for the iterative training of the CNN model, while 

the testing set is employed to evaluate and verify the model's performance. The 

accuracy and loss curves of the model training process are illustrated in Fig. 4. 

 
(a) accuracy                                     (b) loss 

Fig. 4. Accuracy and loss curves of model training process 

To evaluate the transient stability assessment performance of the deep 

learning model constructed in this case study, the metrics of accuracy and miss rate, 

as indicated by equation (16) and (17) respectively, are employed. 
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In the equation, ACCI  represents the accuracy metric, and MARI  represents the 

miss alarm rate metric. PT  represents the number of true positive samples correctly 

classified by the model; NT  represents the number of true negative samples 

correctly classified by the model; NF  represents the number of false negative 

samples, where positive samples are misclassified as negative by the model; PF  

represents the number of false positive samples, where negative samples are 

misclassified as positive by the model. 
Table 2 

Performance Comparison of Different Models 

Model 
IACC%  

(entire dataset) 

IACC% 

(test set) 
IMAR% 

SVM 95.03% 94.88% 4.78% 

DT 96.50% 96.91% 2.61% 

BP 96.32% 95.46% 1.30% 

CNN 97.76% 97.08% 0.61% 

Table 2 presents the performance of the convolutional neural network in 

transient stability assessment. Compared to other machine learning models with 

default parameters, the CNN achieves a classification accuracy of 97.08% on the 

testing set, demonstrating high performance in transient stability assessment. This 

indicates that the CNN can effectively identify and extract spatial correlations 

between variables represented in the form of power flow diagrams through two-

dimensional spatial convolutions. 

4.1 Results and analysis of crucial feature identification 

Taking an unstable sample in the testing set as an example, we use Grad-

CAM and CAM to generate the thermodynamic diagram, as shown in Fig. 5. It can 

be seen that there is little difference between the two, which indicates the 

effectiveness of Grad-CAM. 

 
Fig. 5. The CAM (left) and Grad-CAM (right) results 
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We found that the CNN model will first and focus on the 38 node generator. 

This shows that the generator data has a very powerful feature, and CNN can 

conduct transient stability assessment based on its significant feature when facing 

instability samples.  

As the 38 node is PV bus, the voltage is a fixed value, the active power is 

controlled by the system generation load proportionally, and the reactive power and 

voltage phase angle are calculated by the power flow. Therefore, we plot the 

reactive power of 38 node generators in the data set according to their transient 

stability labels in Fig. 6. The abscissa represents the reactive power output by the 

generator. At the same time, the ordinate has no physical meaning, just to evenly 

distribute the plotted points in the plane. 

 
Fig. 6. Corresponding diagram of reactive power of 38 node generator and stability label  

It can be seen from Fig. 6 that the reactive power of 38 node generator has 

excellent classification effect. When the reactive power is more significant than 1.2 

p.u, the sample may be transient instability. When it is less than 1.2 p.u, CNN needs 

to consider other feature variables for stability judgment. This is consistent with the 

information obtained in the comparison chart in the appendix. 

It can also be seen from Fig. 5 that when CNN evaluates the stable samples, 

although most of the strong activation areas of the samples are still 38 node, CNN 

also focuses on 9, 14, 15, 21 nodes, and 31, 32 node generators. These regions are 

just weak activation regions in the sample activation graph. This shows that the data 

concerned in the CNN stability judgment is multivariate, and the information 

contained in the weak activation region of the feature map can also play a key role 

in the process of CNN output results. In other words, compared with areas without 

valid data, because some regions in the activation map are strongly activated and 

some regions are weakly activated, CNN can make prediction judgments based on 

this. 

In addition, we also found that CNN pays more attention to bus parameters 

than line data. On the one hand, there is redundancy between various data in such a 

large sample. On the other hand, as the key component of the system, the parameters 

of generator and load are reflected on the bus. 
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4.2 Results and analysis of maximizing activation 

The optimal input of the CNN model generated by AM algorithm is shown 

in Fig. 7 and Fig. 8. The diagram is superimposed with the original system wiring 

diagram to facilitate the search for specific feature information. In the dimensions 

of the first input samples, we can see the universal traits CNN extracted and 

emphasized. 

 
Fig. 7. Preferred input of instability label 

 
Fig. 8. Preferred input of stability label 

Here, the output of AM should be described as follows: 1) The color 

represents the category of electrical parameters, that is, red represents active power, 

green represents reactive power, and blue represents voltage amplitude/phase angle 

difference. 2) The color depth represents the numerical value of electrical 

parameters.  

In the training process, the weights of each parameter of the CNN model are 

fixed values, and the AM output results contain typical features extracted by CNN. 

As the input samples are drawn based on geographical wiring diagram, the features 

reflected by AM generation results are associated with their specific locations. CNN 

believes that the optimal inputs of stability and instability are significantly different, 
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with obvious differences in categories and regions. There are the following 

differences: 

1. For the preferred input of the instability label, 30, 31, 32 and 35 nodes turn 

yellow, the color of the pure load node is very light, and that of 3 and 18 nodes 

are light. This indicates that CNN believes that the reactive power output of 

generators at 30, 31, 32 and 35 nodes in the instability sample are too large, 

and the overall load level of the system is too large; 

2. For the preferred input of the stability label, the color near the 6 node is blue. 

Except for the load centers represented by 16, 21, and 24 nodes, the red color 

of other pure load nodes are darker. This indicates that the stability features 

extracted by CNN are that the voltage of the 6 nods is slightly higher and the 

active power demand of the load outside the load center is smaller. 

It can be seen from the above comparison differences that when the active 

output of the system balancer is large and the reactive load rate of the branch is too 

high, the voltage of each node will be reduced, which is easy to lose stability. It 

shows that there must be some relationship between power angle instability and 

voltage. If the active output of individual generator is large, the energy injected into 

the system after failure will be significant and the acceleration area will be large, 

which is not conducive to the system’s stability. When the system voltage is slightly 

high, the power flow to the fault point is small, and the energy injected into the 

system is small, so instability is not easy to occur. 

The actual correspondence between the system-related feature variables and 

the stable labels is shown in Fig. 9 and Fig. 10. This also proves that CNN has a 

robust feature extraction capability and AM has a feature amplification effect. 

 

 
Fig. 9. Mapping of 2 node voltage amplitude, balancing machine reactive power and stability 

labels (green indicates stability, red indicates instability) 
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Fig. 10. 18 node voltage amplitude, 38 node reactive output and the corresponding diagram of the 

stability label (green indicates stability, red indicates instability) 

5. Conclusion 

In this article, we utilize the Grad-CAM and AM algorithms to analyze the 

feature visualization and interpretability of the model. We aim to uncover the 

preferred input for CNN and explore the relationship between strong and weak 

activation in the activation graph and the model output. 

The proposed method in this article is applied to the IEEE-39 system, and 

the interpretability analysis yields the following conclusions: 

1. Upon observing the thermal diagram generated by Grad-CAM, we 

discover that CNN primarily focuses on the reactive output of 38 node generators 

when evaluating instability samples. However, in cases where this feature is not 

prominent, the model shifts its attention to data from nodes 17 and 27. 

2. When CNN assesses stability, it examines both the regions with strong 

and weak activations, which serve as the basis for evaluation. The model's accurate 

predictions are possible due to the presence of strong activation in one area and 

weak activation in another, as depicted in the activation map. 

3. Through the analysis of the optimal input obtained by AM, we ascertain 

that the node information of the system plays a more critical role in CNN's transient 

stability assessment compared to the branch information. Notably, the active and 

reactive power output of the balancing machine, the reactive power output of certain 

generator nodes, the voltage amplitude of node 2, and the load level near the fault 

point exhibit significant classification effects. This demonstrates that CNN 

effectively captures the nonlinear mapping relationship between power flow and 

transient stability. 
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