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A DEEP LEARNING MODEL FEATURE
INTERPRETABILITY ANALYSIS METHOD FOR POWER
SYSTEM TRANSIENT STABILITY ASSESSMENT

Yibo ZHOUY, Liang ZHANG?

The mechanism underlying power system transient stability is complex. Deep
learning models offer an effective solution for capturing complex mapping
relationships, making them widely employed in transient stability assessment.
However, the deep learning models face challenges in ensuring the effectiveness of
feature extraction due to the lack of domain knowledge support. This limitation
hampers improvements in evaluation accuracy. Furthermore, the inability to
comprehend the acquired knowledge of the model raises concerns about trusting
evaluation results, especially in security-sensitive scenarios. To address these issues,
this article proposes a method for analyzing the interpretability of deep learning
model features in power system transient stability assessment. Firstly, we construct a
CNN model specifically designed for transient stability assessment. Then, we
introduce a global interpretation method known as maximizing activation (AM) to
obtain a comprehensive interpretation of typical stable modes within the model's
injection space. Finally, the Class Activation Map (Grad-CAM) is utilized to identify
dominant features in the injection space, providing guidance for the online
application of transient stability assessment. The case studies show that this method
can make operators easily understand the transient stability assessment knowledge
learned by neural networks and improve the accuracy of transient stability assessment
under the security region.

Keywords: transient stability assessment; deep learning model, feature
interpretability analysis; stability pattern recognition.

1. Introduction

The machine learning (ML) method can realize end-to-end learning without
manual feature extraction, such as deep neural network (DNN). This dramatically
simplifies the dependence on expert knowledge and feature engineering. Therefore,
DL has become one of the current common methods for solving complex
classification, and regression problems [1].
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With the increase in the level of the deep neural network, the gradually
abstracted features make it difficult for humans to understand. Therefore, DNN is
usually regarded as a "black box", and the model’s performance judges the
availability requirements. Sometimes, models that are difficult to be explained by
human knowledge show significant differences in some scenarios. At this time, no
apparent reason can be provided [2]. Therefore, this seriously restricts the
widespread application of the DNN model in engineering. It is essential to study
the interpretability of the DNN model.

There are mainly two ways to improve the interpretability of deep learning
models at home and abroad: 1) combining human knowledge and feature
visualization methods, explaining the key features of model extraction and
recognition; 2) The attention mechanism is introduced to get the attention of the
model to some features, to judge which input features are the dominant features.
Reference [3] got the gradient of the network output relative to the input through
the back-propagation algorithm. Then, saliency maps corresponding to the input are
constructed to highlight important parts of the input samples. The deconvolution
network reconstructs the feature map with the same dimension as the input sample
[4]. This identifies pixels and regions that are significantly activated in the input
picture. Reference [5] searched for the input mode of the bounded norm for the
model and activated the selected remote unit to the maximum extent. The
visualization of the calculation content of the team is realized in the input space. It
helps people understand the special meaning of different neurons. The class
activation map (CAM) method replaces the complete connection layer in CNN with
the global average pooling layer [6]. By projecting the weight of the output layer to
the convolution feature map, the core image region related to the label is identified.
Then, the input samples' important regions with class discriminability are located.
Reference [7] proposed a gradient weighted class activation map method (Grad-
CAM). It can be used for any CNN model, and the calculation amount becomes
smaller. The above methods provide a new way to improve the interpretability of
DNN.

As we all know, power system transient stability assessment is a typical
complex correlation map problem. It is difficult to build a map relationship between
input features and system transient stability. Much work has been done on this issue.
Reference [8] uses the generator active output, load active power, key line active
power and other steady-state feature as inputs to build a CNN model. It realizes the
stability evaluation of high accuracy, low misjudgment and low leakage. Reference
[9] used trajectory analysis to build instability indicators, and used CNN to
construct a composite neural network. Furthermore, the map relationship between
the steady-state information of the system and the generator stability metrics is
quantitatively described. This shows that DNN can effectively nonlinearly correlate
the system's high-dimensional feature with the stability. However, when applied to
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the DNN model of the power system TSA, the input samples are non-picture
structures. This leads to the problem that the samples could be easier to understand
intuitively. Reference [10] quantized the impact of input feature DT-based transient
voltage stability model assessment results by SHAP index. To some extent, it
explains the evaluation results of the model for each sample. Reference [11]
obtained the input feature heat map using the Guided Grad-CAM algorithm and
1D-CNN model. It is found that node voltage has a more significant influence on
TSA results than line power flow. These research results can provide new ideas for
revealing the mechanism of transient stability.

In the face of a model with nonlinear solid fitting ability, it is essential to
understand its internal working principle and turn it into a "gray box" or even a
"white box". Enhancing the interpretability of the DNN classification model can be
divided into the following two parts: one is to strengthen the understanding of input
samples, and the other is to understand the extracted features of the model. The
recognition and enhancement of DNN model features can enhance the knowledge
of the weight of each layer of the model and improve trust in the model. It can also
help engineers and technicians improve the model's structure and parameters and
promote the popularization of deep network model in practical projects.

Under the background that deep neural network has achieved excellent
results, aiming at the problem of poor interpretability of the model, this article
adopts a DNN feature recognition method. Taking the CNN model as an example,
we use the Grad-CAM algorithm to recognize and locate the features of the CNN
model. It directed CNN to find the specific location of key data in the sample. Then,
the activation maximization (AM) algorithm is used to construct sample features to
explain the model. At the same time, a new input sample construction method is
proposed. The training samples of CNN are constructed in the form of geographical
wiring diagram, which enhances the readability of sample data and facilitates the
visualization of features. Finally, the effectiveness and feasibility of this method are
verified in the IEEE-39 system.

2. Feature Interpretability Analysis Method

The so-called interpretability refers to the ability to display in a human-
understandable way. The core is how to understand the relationship between the
feature of input samples and the output. Visualizing the components extracted from
CNN models has become an effective tool to reveal the differences between CNN
and human recognition. The feature information extracted from the trained CNN
model implies the convolution kernel weight. The weights are difficult to
understand, while the original sample features are understandable. Therefore, the
components extracted by CNN from samples can be reconstructed under the actual
sample dimensions using appropriate algorithms, and the regions where the main
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features exist can be pointed out. This section will introduce two interpretable
methods: feature recognition and feature enhancement algorithms.

2.1 Grad-CAM

The samples are input into a CNN model, and the time for the model to
make judgments is very short and the accuracy meets the expectation. The operator
wants to know what information CNN "sees" in the input sample during this process
before making a corresponding judgment. To solve this problem, the Grad-CAM
method can explain better.

Grad-CAM comes from improving CAM. CAM changes the fully connected
layer to global average pooling (GAP) layer. Then CNN can provide a feature map
for corresponding sample categories. The map k£ weight to the corresponding

category is w; in Fig. 1. By taking out the graph corresponding to the category,

and then weighting and summing its corresponding feature graph, the final output
iIs a class activation map. CAM can find features related to output classes. The larger
the value of each point in map, the higher the attention of model to corresponding
area. Finally, the location information of the features concerned by the model can
be obtained.

Label 1
Label 2
Label 3
GAP
S i .
] | Labeli
. . -
W Label n

Fig. 1. CAM Schematic diagram
CAM needs to change the model structure and retrain it. This is time-
consuming and laborious in practice. Therefore, Grad-CAM improved CAM. The
result calculated is identical to that of the original CAM, as shown in (1).
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Where Z is the number of pixels; y° is the score of category c; A" is the k-th
feature map; A} is the value in the (4,5) position; M° is the calculated CAM of the
category c. At the same time, the score y, after softmax is related to all categories.

If only the gradient is calculated, it is assigned to the corresponding position
after taking the absolute value. The result is also called a saliency map. It can
indicate which small changes of data in the input sample can have a more significant
impact on the CNN output score, that is, which data CNN is sensitive to.

The training process of Grad-CAM needs to be included. In addition, the
results of the Grad-CAM output are guided by labels. For the same sample, different
labels can make CNN view the original sample at various locations, while the
saliency map does not have this feature.

Grad-CAM can show which part of the input sample CNN sees before
making the corresponding prediction. It can check whether CNN pays attention to
the correct area in the input sample. This method has achieved remarkable results
in the field of image recognition.

2.2 Activation Maximization

It is challenging to analyze the interpretability of CNN by reducing the
dimension of high-dimensional information in the convolution kernel. Therefore, a
new method is used to visualize features, namely activation maximization. It can
visualize the optimal input of each layer of neurons. The optimal input is the input
sample that can make the activation value of the model output larger. "The
activation value should be as high as possible” can be interpreted as "the most
likely" for the layer. As a result, the optimal input could reveal which features the
chosen neuron might have understood. The idea of AM is very intuitive. For a
trained network, the optimal input can display the CNN extracted features in the
dimension of input samples. This feature display is not achieved by dimensionality
reduction of high-dimensional features, which avoids the dimensionality reduction
process of high-dimensional features. Instead, a "most expected" input sample of
CNN is gradually generated through iterative training. In this input sample, features
must be extracted by the network, and the objective function:

X =argmaxa;, (6, x) (3)

The training process of AM:
(1) Create an initial input sample of random numbers and feed it into CNN,
and forward propagation be done.

da; _
tilize backpropagation to determine the gradient di of the active
(2) Utilize back d h d oz

value relative to the input.
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(3) Update input:
oa;, (0,x")

(n+1) _ (n) X
X =X""+n ax(n)

(4)

Where 7 is the learning rate.

(4) Repeat steps (1), (2) and (3) until there is no noise data in the input or
the maximum amount of iterations is completed.

According to the iteration process of AM, we can infer that while presenting
the characteristics, AM also somewhat enlarges them. This is so that the iterative
process' objective of maximizing the activation value can be achieved, and some
feature in the original sample makes the activation size of the feature map smaller
than the maximum activation value. A higher activation value indicates that the
sample's features are far more noticeable.

Generally, a convolutional neural network with deep structure has
convolution, pooling, full connection layer and output layer. The full connection
layer contains information related to all categories, which is difficult for humans to
understand and visualize. For different CNN output results, we want to know what
kind of samples CNN "most expects" to input. Therefore, this method is applied to
the output layer of CNN (before softmax), which may give a reasonable explanation
to the classification results of convolutional neural networks.

Then, the iterative training's objective function changes when the output
layer is used:

argmax S, (x) — All xI ®)

Where S, (z) is the score of category c; To guarantee that the final result is as

similar to the original sample as feasible without becoming overly abstract and
challenging to understand, regularization parameter A is used. The reason for

taking the score before softmax is that the maximum score after softmax may be
achieved by minimizing the score of other categories, so focus on S, (z) to verify

that category c is the only optimization target for all efforts and have nothing to do
with other categories. Regularization parameters are introduced to govern the
output, thereby making the final output more natural because of results acquired by
using this method to deepen CNN will be more abstract and challenging to
comprehend.

In addition, an initial image can be selected to replace the sample initialized
by noise data initially set by the algorithm. In this way, the initial sample can be
used as a guide to add features learned by the CNN model. If the initial image is
completely irrelevant to the content learned by CNN, the original image will be
given new features. This process is often used as style transfer in the field of image
recognition, that is, to convert the image from the original style to another style,
while ensuring that the main content of the image does not change.
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In actuality, for the convolutional neural network-based transient stability
assessment model, AM is used to produce a sample that CNN considers the most
"stable” and the most "unstable”. And depending on the colors shown in the sample
pictures, we can find the feature of the system trend. This can provide great help
for the power system TSA.

3. Sample Construction Method for Improving Model Interpretability

As we all know, the construction of input information matrix has a
significant impact on the model’s performance. For power system transient stability
analysis, the power flow before failure reflects the power operating point and offers
extensive data on transient stability. Therefore, for the CNN model adopted in this
article, the power flow data is selected to construct the CNN input samples.

3.1 Construction of input sample matrix based on node connection

relationship
Table 1
Feature Variables in Power Flow Information
Variable types Electrical parameters
Generator active power output P, reactive power output Q¢
Load active power P, reactive power Q...

Head end power Pri,.~ Qrinc
voltage angle difference at two ends of the branch. A0 =0, — 6,
Node node voltage amplitude U,, , voltage phase-angle 6,

Line/Transformer

For a power system with N nodes, the sample matrix can be constructed
from the power flow information in the form of an admittance matrix. The row and
column labels of the matrix correspond to the node number one by one. Information
about nodes is represented by the matrix's primary diagonal elements, while the
upper and lower triangular elements represent branch information. Different
electrical parameters can be respectively constructed into admittance like matrices
and stacked into three-dimensional matrices. The feature variables included in the
power flow information are shown in Table 1.

The power flow information mainly includes active power, reactive power
and voltage, so the dimension of sample matrix F is N * N * 3. The specific
construction method is shown below.

1. The active power injected by each system bus is represented by the
matrix's first layer and the active power transmitted by branches.

FGi,i,)=PR, -P_ 1=12,...,N (6)

F(@,j,1)=P, Lj=L2,...,N i#] (7)

ine (i,j)
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Where p,,.., represents the active power at the head end of the branch connecting

node i and j, and the node with a small number is the head end.
2. The second layer of the matrix represents the reactive power injected by
each node of the system and the reactive power transmitted by branches.

F(i,1,2) = Qg ~ Quuwti 1=1,2,...,N 8)

FG,0.2)=Quuqy Bi=12...,N i#] 9)

Where Q,...., represents the reactive power at the head end of the branch
connecting node i and j, and the node with a small number is the head end.

3. The third layer of the matrix represents the bus voltage amplitude and the

voltage angle difference at two ends of the branch.
F@,i,3)=U_. i=12,...,N (10)
F@,j,.3)=A6; 1,j=12,...N i#] (12)

The input sample data generated by the above method contains almost all
the power flow information. The network topology is hidden in the data, and the
data is complete and the physical meaning is clear. It is also clearly separable in
computer vision, which facilitates CNN to select data and extract features.
However, we will find that more data in the samples constructed in this way are
concentrated near the main diagonal, and the data is relatively dense. This makes it
more difficult for people to understand the sample and analyze the interpretability
of the CNN model. Therefore, we need a convenient sample construction method
for CNN interpretability analysis.

3.2 Sample matrix construction method based on geographical wiring
diagram

A sample building technique based on the geographical wiring diagram is
suggested in order to use CNN's image recognition capabilities and to simplify the
interpretability study. An RGB image serves as a representation of each power flow
sample (3D matrix), in which circles are used to represent node and branches. The
power flow information is entered with in diagram based on such a system wiring
design. The pixel value of each channel is [0, 255]. Cy is the pixel value of each

channel of the node, and C;, is the pixel value of the branch. Since the picture pixel

contains R, G, and B channels, the following method is used to convert the power
flow data to the pixel value.

1. The active power that node i injects and branch j transmits is known as
the R channel.

CNi = PGi - PLoadi CLj = PLinej (12)

2. The reactive power that node i injects and branch j transmits is known as
the G channel.
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Crni = Qs = Quoasi CLj = QLinej (13)
3. The voltage amplitude at node i and the phase angle difference between
two ends of branch j are both represented by the B channel.

Cu=U, C,=A4A6, (14)
4. Normalize the above converted values to [0,255].
, 255
C=——x(C-C_ 15
—e—x(C~Cyy) (15)

max min

Where C' is the normalized pixel value, C' is the non normalized pixel value, and
Crax and Cpy, are the maximum and minimum values of the same category
variable (Cy or C}) respectively.

To simplify the interpretation process, reducing the number of variables can
be beneficial for stable labels. Hence, a single fault is selected as the fault set, with
the category, location, and time of each sample remaining unchanged. In this
scenario, the stability label is determined based on whether the system transient is
stable or not. In this way, each sample is drawn as an RGB image. With the help of
this sample creation technique, features can be visualized and their interpretability
can be examined after the information in the system topology has been fully
displayed. A topological diagram illustrating the relative positions of the network
nodes is depicted in Fig. 2.
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Fig. 2. System node label comparison

4. Case Studies

The IEEE-39 system is used to evaluate the performance of the proposed
model. Simulation experiments are performed in PSASP. The generators are the 2th
order model and the loads are the constant impedance model. The fault is set to a
three-phase short circuit, assumed to occur on bus 18 and cleared after lasting 0.1s.
All the loads are set between 80% and 120% of the original load levels, respectively
and the power of generations is also scaled in the same proportion. The total
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simulation time is 5s. The system’s topology does not change before and after the
short circuit. A total of 11421 samples are obtained from simulation, of which 7845
are stable and 3576 are unstable. The training set and testing set are randomly
divided according to the ratio of 4:1. The deep neural network model is built based
on the PyTorch 2.0 framework. The structure of the model, as well as the detailed
parameters of the convolutional layers and pooling layers, are depicted in Fig. 3.
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Fig. 3. Transient stability evaluation model based on convolutional neural networks

The training set is utilized for the iterative training of the CNN model, while

the testing set is employed to evaluate and verify the model's performance. The
accuracy and loss curves of the model training process are illustrated in Fig. 4.
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Fig. 4. Accuracy and loss curves of model training process
To evaluate the transient stability assessment performance of the deep
learning model constructed in this case study, the metrics of accuracy and miss rate,
as indicated by equation (16) and (17) respectively, are employed.

L% =—2 T 1000 (16)
T+ R +F +Ty

o

x100% (17

l...%=
MAR F.+T,
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In the equation, 1,.. represents the accuracy metric, and I,,,; represents the
miss alarm rate metric. T, represents the number of true positive samples correctly
classified by the model; T, represents the number of true negative samples
correctly classified by the model; F, represents the number of false negative
samples, where positive samples are misclassified as negative by the model; F,

represents the number of false positive samples, where negative samples are
misclassified as positive by the model.

Table 2
Performance Comparison of Different Models
Licc% Licc% o
Model (entire dataset) (test set) Lhuar%
SVM 95.03% 94.88% 4.78%
DT 96.50% 96.91% 2.61%
BP 96.32% 95.46% 1.30%
CNN 97.76% 97.08% 0.61%

Table 2 presents the performance of the convolutional neural network in
transient stability assessment. Compared to other machine learning models with
default parameters, the CNN achieves a classification accuracy of 97.08% on the
testing set, demonstrating high performance in transient stability assessment. This
indicates that the CNN can effectively identify and extract spatial correlations
between variables represented in the form of power flow diagrams through two-
dimensional spatial convolutions.

4.1 Results and analysis of crucial feature identification

Taking an unstable sample in the testing set as an example, we use Grad-
CAM and CAM to generate the thermodynamic diagram, as shown in Fig. 5. It can
be seen that there is little difference between the two, which indicates the
effectiveness of Grad-CAM.

Fig. 5. The CAM (left) and Grad-CAM (right) results
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We found that the CNN model will first and focus on the 38 node generator.
This shows that the generator data has a very powerful feature, and CNN can
conduct transient stability assessment based on its significant feature when facing
instability samples.

As the 38 node is PV bus, the voltage is a fixed value, the active power is
controlled by the system generation load proportionally, and the reactive power and
voltage phase angle are calculated by the power flow. Therefore, we plot the
reactive power of 38 node generators in the data set according to their transient
stability labels in Fig. 6. The abscissa represents the reactive power output by the
generator. At the same time, the ordinate has no physical meaning, just to evenly

O stability

B instability

reactive power (p.u.)

Fig. 6. Corresponding diagram of reactive power of 38 node generator and stability label

It can be seen from Fig. 6 that the reactive power of 38 node generator has
excellent classification effect. When the reactive power is more significant than 1.2
p.u, the sample may be transient instability. When it is less than 1.2 p.u, CNN needs
to consider other feature variables for stability judgment. This is consistent with the
information obtained in the comparison chart in the appendix.

It can also be seen from Fig. 5 that when CNN evaluates the stable samples,
although most of the strong activation areas of the samples are still 38 node, CNN
also focuses on 9, 14, 15, 21 nodes, and 31, 32 node generators. These regions are
just weak activation regions in the sample activation graph. This shows that the data
concerned in the CNN stability judgment is multivariate, and the information
contained in the weak activation region of the feature map can also play a key role
in the process of CNN output results. In other words, compared with areas without
valid data, because some regions in the activation map are strongly activated and
some regions are weakly activated, CNN can make prediction judgments based on
this.

In addition, we also found that CNN pays more attention to bus parameters
than line data. On the one hand, there is redundancy between various data in such a
large sample. On the other hand, as the key component of the system, the parameters
of generator and load are reflected on the bus.
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4.2 Results and analysis of maximizing activation

The optimal input of the CNN model generated by AM algorithm is shown
in Fig. 7 and Fig. 8. The diagram is superimposed with the original system wiring
diagram to facilitate the search for specific feature information. In the dimensions
of the first input samples, we can see the universal traits CNN extracted and
emphasized.

O active power
O reactive power

voltage amplitude/
phase angle difference

[ reactive power

voltage amplitude/
phase angle difference

Fig. 8. Preferred input of stability label

Here, the output of AM should be described as follows: 1) The color
represents the category of electrical parameters, that is, red represents active power,
green represents reactive power, and blue represents voltage amplitude/phase angle
difference. 2) The color depth represents the numerical value of electrical
parameters.

In the training process, the weights of each parameter of the CNN model are
fixed values, and the AM output results contain typical features extracted by CNN.
As the input samples are drawn based on geographical wiring diagram, the features
reflected by AM generation results are associated with their specific locations. CNN
believes that the optimal inputs of stability and instability are significantly different,
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with obvious differences in categories and regions. There are the following
differences:

1. For the preferred input of the instability label, 30, 31, 32 and 35 nodes turn
yellow, the color of the pure load node is very light, and that of 3 and 18 nodes
are light. This indicates that CNN believes that the reactive power output of
generators at 30, 31, 32 and 35 nodes in the instability sample are too large,
and the overall load level of the system is too large;

2. For the preferred input of the stability label, the color near the 6 node is blue.
Except for the load centers represented by 16, 21, and 24 nodes, the red color
of other pure load nodes are darker. This indicates that the stability features
extracted by CNN are that the voltage of the 6 nods is slightly higher and the
active power demand of the load outside the load center is smaller.

It can be seen from the above comparison differences that when the active
output of the system balancer is large and the reactive load rate of the branch is too
high, the voltage of each node will be reduced, which is easy to lose stability. It
shows that there must be some relationship between power angle instability and
voltage. If the active output of individual generator is large, the energy injected into
the system after failure will be significant and the acceleration area will be large,
which is not conducive to the system’s stability. When the system voltage is slightly
high, the power flow to the fault point is small, and the energy injected into the
system is small, so instability is not easy to occur.

The actual correspondence between the system-related feature variables and
the stable labels is shown in Fig. 9 and Fig. 10. This also proves that CNN has a
robust feature extraction capability and AM has a feature amplification effect.

reactive power of balancing machine

Fig. 9. Mapping of 2 node voltage amplitude, balancing machine reactive power and stability
labels (green indicates stability, red indicates instability)



A deep learning model feature interpretability analysis method for power system transient... 319

reactive output of node 38 (p.u.)

\"o]tage‘ail.up]in.u:i;ofx;o:;c lé (:};.u.] a
Fig. 10. 18 node voltage amplitude, 38 node reactive output and the corresponding diagram of the
stability label (green indicates stability, red indicates instability)

5. Conclusion

In this article, we utilize the Grad-CAM and AM algorithms to analyze the
feature visualization and interpretability of the model. We aim to uncover the
preferred input for CNN and explore the relationship between strong and weak
activation in the activation graph and the model output.

The proposed method in this article is applied to the IEEE-39 system, and
the interpretability analysis yields the following conclusions:

1. Upon observing the thermal diagram generated by Grad-CAM, we
discover that CNN primarily focuses on the reactive output of 38 node generators
when evaluating instability samples. However, in cases where this feature is not
prominent, the model shifts its attention to data from nodes 17 and 27.

2. When CNN assesses stability, it examines both the regions with strong
and weak activations, which serve as the basis for evaluation. The model's accurate
predictions are possible due to the presence of strong activation in one area and
weak activation in another, as depicted in the activation map.

3. Through the analysis of the optimal input obtained by AM, we ascertain
that the node information of the system plays a more critical role in CNN's transient
stability assessment compared to the branch information. Notably, the active and
reactive power output of the balancing machine, the reactive power output of certain
generator nodes, the voltage amplitude of node 2, and the load level near the fault
point exhibit significant classification effects. This demonstrates that CNN
effectively captures the nonlinear mapping relationship between power flow and
transient stability.
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