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OBSERVER BASED ESTIMATION OF CHAOTIC DYNAMICS 
WITH EXPONENTIAL NONLINEARITIES 

Octaviana DATCU1, Mihai STANCIU2, Alina PETRESCU-NIŢĂ3 

The observability of a system with respect to its possible outputs is usually 
evaluated using the rank criterion of the observability matrix or the observability 
indices. In addition, this paper uses the properties of the differential equations 
characterizing real-time electrical circuits which base their nonlinearities on the 
exponential function. Interplay between mathematical tools and practical 
considerations is done through observability coefficients, observability matrices and 
high order sliding mode observers for the Colpitts chaotic system, representative for 
such nonlinearities. 
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1. Introduction 

The aim of the present work is to contribute to the field of synchronization 
between chaotic systems [1], targeting the chaos-based cryptography [2]. The 
existent approaches evaluate the observability of a system with respect to its 
possible outputs using the rank criterion of the observability matrix or the 
observability indices [3]. 

In addition to the known approaches, this paper uses the properties of the 
systems described by differential equations characterizing real-time electrical 
circuits which base their nonlinearities on the exponential function, mostly 
consequence of the Ebers-Moll model [4]. Due to its rapid growth or decay to 
zero, together with the bifurcation parameters [5], which are according to an 
evolution in bounded space, and time constants, due to the reactive elements in 
such circuits [6], the exponential function as element of the observability matrix 
enables or not the practical recovery of the original state space from a single data 
series. For exemplification we choose the Colpitts oscillator (1), with bifurcation 
parameters QgA /2=  and ,/1 QB −=  due to its popularity in the field. 
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Since the seminal work of Kennedy [7, 8] the Colpitts system was given 
much attention in the literature. Its dynamics is studied from the perspective of 
chaos theory in [9]. The two-way synchronization between chaotic oscillators is 
analyzed in [10] in terms of the coupling coefficient required to get full 
synchronization. A secure communication algorithm based on hybrid chaotic 
dynamics implying the one-way synchronization between two Colpitts chaotic 
oscillators is proposed in [11]. 

The remaining of the paper is organized as follows: Section 2 presents 
some useful concepts and algorithms existent in the literature, Section 3 highlights 
the main results of the paper, and some conclusions and perspectives are 
formulated in Section 4. The simulation results are obtained with Matlab-
Simulink R2013a and the scripts and the models are available on 
http://www.elcom.pub.ro/~od/ 

2. Concepts of observability and observability indices 

Some theoretical tools from [3] and used in this work are particularized for 
the tridimensional Rössler system (2) from [12], with bifurcation parameters 
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The state 3xy =  is chosen as output of the system. The output is 
sometimes called observable in the remaining of the paper. The measurement 
function is the row vector ]100[=Y  the unity element indicating the 
observable. The transformation map between the original state space 

),,( 321
3 xxxR  and the differential embedding viewed by the variable ,3xy =  

),,,( 321
3 zzzR j  where ),,(),,( 321 yyyzzz =  is ),,,(),,(: 321

3
321

3 zzzRxxxR jj →Φ  
with ,3=j  given in (3). 
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If jΦ is injective and its Jacobian matrix has a determinant which is non-
null on the entire state space the original system is observable at any point in 
space when the measurement function is given by the variable ,j  as stated by [3]. 

In order to define the Jacobian matrix for jΦ  to obtain observability 
matrices with accurate interpretation regardless of the linearity or nonlinearity of 
the transformation map engendered by the considered output, the Lie derivative 
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−=  are used. The dimension of the map is .m  

The observability matrix 3M  defined in (4) for system (2) with 3xy =  must be 
full column rank, i.e. ,3)( 3 =Mrank  to ensure full observability [3].  
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Matrix 3M  depends on the dynamical variables with the determinant 

,|| 2
33 xM −= thus being singular at ,03 =x i.e. it does not allow an inverse. So, the 

Rössler system is not fully observable when its output is .3xy =  
The degree of observability can be locally quantified by the observability 

indices defined as the absolute value of the rate between the minimum eigenvalue 
of the matrix ][ j

T
j MM  and the maximum eigenvalue of the previously mentioned 

matrix, computed at the any moment. Nevertheless, in this work, it is not the mean 
of these local indices that will be computed, but the observability coefficients 
obtained from the structure of the considered system. The steps of the algorithm 
particularized in [13] for the Rössler map, are briefly presented below. 

(a) Write the fluency matrix. In the Jacobian matrix of the system, replace 
each constant element by 1, each nonlinear term by .1  Elements which are neither 
constant, nor variable, will be replaced by 0. 

(b) Define by iC ,1  the column vectors corresponding to each state of the 
studied system, i  corresponding to the measured state variable 21, xx  or .3x  A 
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value of 1 indicates the state which was chosen to reconstruct the dynamics of the 
system. Thus, ,]001[1,1

TC =  ,]010[2,1
TC = .]001[3,1

TC =  Matrices 

iH ,1  are obtained by replacing the diagonal element of the fluency matrix 
corresponding to each variable by a dot and multiplying each of its rows by the 
corresponding element in .,1 iC  Count the number ip ,1  of linear elements and the 
number iq ,1  of nonlinear elements in .,1 iH  

(c) Replace the dot in iH ,1  by 0, 1 or ,1  according to the fluency matrix, 
and transpose .,1 iH  Count the number of non-null elements of each row, defining 
the new column vectors .,2 iC  

(d) Obtain the matrices iH ,2  by replacing each non-null element of 
T

iH ][ ,1 by a dot and the rest of the elements by their corresponding elements in 
the fluency matrix multiplied by the corresponding element of the column vector 

.,2 iC  Count the number ip ,2  of linear and the number iq ,2  of nonlinear elements 
in .,2 iH  

(e) Compute the observability coefficients with formula (5), where 
,1,1,1 =+ ii qp  if  0,1 =ip  and ,1,2,2 =+ ii qp  if  .0,2 =ip   
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3. Main results 

Observability coefficients for the Colpitts oscillator 
 
According to the algorithm in [13] previously described in Section 2, we 

compute the observability coefficients for the Colpitts oscillator (1). The Jacobian 
matrix and the fluency matrix for the Colpitts oscillator are expressed in (6). 
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Matrices iH ,1  and the numbers of their linear and nonlinear elements: 
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The transposed matrices T
iH ][ ,1 and the row vectors iC ,2  are expressed in:  
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Consequently the new matrices iH ,2  and the corresponding numbers of 
linear and nonlinear elements ,, ,2,2 ii qp respectively, are given in (9). 

;1;0;1;2;3;4

;
11
00
10

;
10
100
100

;
11
10
110

3,12,21,23,22,21,2

3,22,21,2

======→

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•
•
•

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

•
•=

qqqppp

HHH
  (9) 

Eventually, the observability indices are calculated in (10). We recall that 
an observability index which equals unity indicates that the investigated system is 
fully observable from the corresponding variable.  

;89.0;1;73.0 321 === ηηη     (10) 
 
Full reconstruction of the Colpitts’ dynamics when its output is .2x  
 
According to the computation of the observability coefficients from (10), 

choosing the second state of (1) as output, the system is observable at any point in 
the state space. The corresponding transformation map is given in (11). 
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The non-null determinant |M2|=0.5·A of the observability matrix 
guarantees that it is nonsingular, allowing an inverse. Thus, system (11) can be 
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solved and the estimated states of (1) are in (12). This estimation is valid as a 
consequence of the linearity of .2Φ  
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A four order sliding mode observer [14] is adapted in (13) to estimate 
,]ˆˆˆ[ˆ 321

TzzzZ =  with 510=M  and .5.0 43242 1 BzzeAzzE z +−−== −  The 

additional state 34 ˆˆ zz =  was added in order to avoid chattering in the Ẑ  estimates. 
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For parameters )38.1,46.4(),( =Qg  and initial conditions 0321 |),,( =txxx  
)9.0,8.0,1.0(=  the recovery of the original states 1x  and 3x  of system (1) is 

shown in Fig.1, for observer (13) initialized at ,4.0,3.0(|),,( 0321 ==tzzz  ).2.0,8.0  

  
Fig. 1. The first (left) and the third (right) state of the Colpitts oscillator when the output 

is its second state. Original signals in solid line, estimated signals in dashed line.  
 

The Colpitts dynamics observed from the perspective of its third state  
 
When the output of system (1) is ,3x  the available information are in (14). 

The observability matrix for system (14), given in (15), has the determinant 
,25.0|| 21

3
xeAM −−=  thus being singular for .02 =−xe  So, system (14) has 

multiple solutions or none at all whenever the signal 2x  satisfies .02 =−xe  
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The equation 02 =−xe  implies ,2 −∞=x  which cannot be true, neither in 
theory, nor in simulation, much less in analog implementation. Chaotic systems 
have an evolution which is bounded in space. See [15] for an application where 
the boundedness of chaotic evolutions is exploited to simplify an adaptive 
controller structure, removing explicit knowledge of the nonlinearities of the 
systems involved from the controller. Second, in simulation, the maximum value 
reached by the variable 2x  is much smaller, so that ,02 ≠−xe  at any point in the 
state space. In analog circuitry 2x  is the voltage drop on a capacitor, which 
cannot reach infinity. Consequently, system (14) can be solved, 3M  being 
nonsingular, and solutions are given in (16). 
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The argument of the natural logarithm has to be greater than zero in order 
to obtain only real values, in (16). So,   

00)5.0ˆˆˆ(2 2321 >⇔>++− −xezzBz    (17) 
The estimates from (16) are obtained in simulation in Fig. 2. The 

bifurcation parameters are ),38.1,46.4(),( =Qg  initial conditions are 

0321 |),,( =txxx  )9.0,8.0,1.0(=  and ,4.0,3.0(|),,( 0321 ==tzzz  ).2.0,8.0  Although 
condition (17) is, from a theoretical point of view, always fulfilled, in simulation, 
due to truncations and rounding specific to computation,  2xe−  is not positive over 
the entire domain. So, although the estimation of 2xe−  and 21 ˆˆ xx +  is pretty 

accurate as it can be observed on Fig. 2 (right), when 2xe−  is asymptotically close 
to zero, the signals 1x̂  and 2x  cannot  be correctly estimated as seen in Fig. 2 
(left). Due to the dependence that exists between the measured variable 3x  and the 
unknown state ,2x  i.e. ,32 Axx =  another possible approach in order to estimate 
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the dynamics of the transmitter from its output would be to integrate the measured 
variable 3x  and use the settings for the measured state 2x  described above. The 
integration constant is very difficult to obtain in practice. Therefore, this is not a 
reliable solution. 

 
Fig. 2. The third state as output. Original signals in solid line, estimated signals in dashed 

line.  In bold ).exp( 2x− Left: 1x  and 1x̂  (top), 2x  and 2x̂  (bottom). Right: )exp( 2x−  and 
)ˆexp( 2x−  (top), 21 xx +  and 21 ˆˆ xx +  (bottom). 

 
Approximate recovery of Colpitts’ dynamics observed by its state 1x   
 
The investigator does not know the other two states, either directly, or 

through the derivatives of the output .1xy =  The embedding of the original 
dynamics seen from the perspective of this output is expressed in (18). The 
corresponding observability matrix is given in (19). 
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The elements of the matrix 1M  depend on the unknown states 2x  and ,3x  
which cannot be recovered from the knowledge of the output 1x  and its 
derivatives. As 2xAe−  rapidly decays to zero, with increasing ,2x  the matrix (19) 
can be rewritten as in (20), which is nonsingular with the determinant 

.02/|| 1 ≠= AM  Nevertheless, the recovery of the information is not complete, 



Observer based estimation of chaotic dynamics with exponential nonlinearities             213 

due to the regions of the state space where the approximation 02 =−xAe  does not 
hold. The solution ZMX aux ˆ)(ˆ 1

1
−=  is valid due to the linearity of the new map. 
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Results of the estimation of the states of system (1) with ,ˆ)(ˆ 1
1 ZMX aux −=  

are presented in Fig. 3. The initial conditions are the same as for previous results. 
The shifts of ,2AB respectively 1, were removed, given that they are well known 
by the legal receiver and the channel is noise free. 

   
Fig. 3. The states  2x  and 3x of the Colpitts oscillator when 1xy =  for 

).38.1,46.4(),( =Qg  Approximation of )exp( 2xA −  to zero (left) and estimation with the gradient 

algorithm (right). Originals in solid line, estimated in dashed line, 2xAe− in bold.  
Comparing the estimations obtained by approximating )exp( 2xA −  to zero 

(left) and the estimations using the gradient algorithm (right), one can observe that 
supplementary difficulties appear when exponential nonlinearities are neglected.  

4. Conclusions 

One of the applications for chaotic systems is chaos-based encryption. The 
structure of the transmitter is well known, and the key is generally constituted by 
the bifurcation parameters and the initial conditions of the system. The 
synchronization between the transmitter and the receptor is essential in (secret) 
communications. The output of the transmitter must be chosen so that it ensures, 
at the receiving end, the most accurate estimation of its dynamics. The Colpitts 
oscillator was considered, being representative for the chaotic circuits which base 
their nonlinearity on the exponential function. When the scalar data series 
corresponding to its second state, the output of the transmitter, is the only 
available to the receiver, he can accurately estimate the original dynamics. This 
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was proven by computation of the observability coefficients, also by sliding mode 
observers. The exponential function enables or not the practical recovery of the 
original state space from a single data series, represented by the first or the third 
state of the Colpitts transmitter. 
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