U.P.B. Sci. Bull., Series C, Vol. 82, Iss. 2, 2020 ISSN 2286-3540

AN IMPROVED MACHINE LEARNING TECHNIQUES
FUSION ALGORITHM FOR CONTROLS ADVANCED
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Wind energy is an alternative energy vector that is increasingly attracting
the attention of industrialists and scientists. Moreover, the exploitation of this
deposit suffers from discontinuity in production due to the instability of the wind and
a non-linearity due primarily to wind fluctuations. The stochastic nature of the wind
makes difficult the determination of optimal operating points corresponding to the
maximal power coefficient and the difference between recorded power coefficient
values even if machines are working under the same conditions. As a solution of
these problems, this paper proposes a power coefficient real-time estimation based
on machine learning techniques fusion based on Ordered Weighted Averaging
operator (OWA). statistical analysis is carried out to verify the performance of the
proposed algorithm. The reference wind turbine chosen is Controls Advanced
Research Turbine (CART) from the National Renewable Energy Laboratory
(NREL). Simulations performed on MATLAB software show the efficiency of the
proposed approach and its superiority compared to MLP, RBF and ANFIS power
coefficient real-time estimators.

Keywords: Power coefficient, Ordered Weighted Averaging (OWA), Data
Fusion, Machine Learning, Estimation

1. Introduction

Nowadays, the exploitation of renewable energies, in particular, wind
energy has increased considerably [1]. Renewable energy has experienced a
meteoric rise in recent years because they are clean and offer a considerable

* Laboratoire de recherche en risque controle et sreté (L2RCS), Badji Mokhtar Université,
UBMA. BP12, Annaba 23000, Alegria, e-mail : seifeddinechehaidia@yahoo.fr

2 Laboratoire de recherche en risque controle et sdreté (L2RCS), Badji Mokhtar Université,
UBMA. BP12, Annaba 23000, Alegria, e-mail : abdallah_abderrezak@yahoo.fr

3 Laboratoire de recherche en risque controle et slreté (L2RCS), Badji Mokhtar Université,
UBMA. BP12, Annaba 23000, Alegria, e-mail : hamid_kherfane@yahoo.fr

4 Laboratoire d’ Automatique et de Robotique de Constantine, Department of Electronics, Mentouri
brothers Université, Route de Ain-el-Bey, 25000 Constantine, Alegria, e-mail
b_boukhezzar@hotmail.com

5 Laboratoire de génie Electrique Biskra (LGEB), Mohamed Khider Université of Biskra, Algeria,
e-mail : hakima.hakima5@gmail.com



280 S. E. Chehaidia, A. Abderezzak, H. Kherfane, B. Boukhezzar, H. Cherif

economic contribution. This has motivated several countries to consider these
inexhaustible sources, including wind energy as an attractive energy vector[2].

Wind turbine is a strongly nonlinear system, because of the stochastic
nature of wind as well as the power coefficient. VVarious analytical models of wind
turbine power coefficient Cp (4,8) can be found in literature, which describes
blades aerodynamics’ as a function of Tip-speed ratio 4 and Pitch angle £(deg)
[2-6]. [7] Uses a lookup table. It is well established that the nonlinearity of the
system is not the only problem to be encountered in wind turbine control, but also
the determination of the optimum operating point since it is not the same even if
wind turbine has similar characteristics and working under the same conditions
[4]. These issues also meet the challenges related to the control of wind turbines
and have led many researchers to consider machine learning techniques.
Moreover, they are preferred if it is possible to obtain good quality data [8]. For
renewable energies, particularly wind energy conversion systems, various
techniques have been used, among others, fuzzy logic (FL)[5], Artificial neural
networks (ANNSs) [1, 9], and adaptive neuro-fuzzy Inference System (ANFIS)
[10-12].

In [13] Multi Layers Perceptron Neural Network (MLP) was used to
estimate wind speed using a single hidden layer with five tan-sigmoid neurons, in
order to compensate power coefficient drift. Despite the effectiveness of the
proposed method, the control scheme is very complicated. In [3] a power
coefficient Cp (4,) optimization based on Lyapunov control strategy has been
proposed. Gradient search method has been used in order to ensure the
convergence of A and [ to their optimums, which ensures stable and efficient
control in second zone[14]. In a major advance in 2013, Petkovic proposed a
power coefficient Cp (4,5) estimation using ANFIS. The results seem innovative
and give a good approximation, however, the use of an analytical expression
where the coefficients are already estimated harms the estimation and does not
allow the expected precision to be achieved[10]. [12] developed a power
coefficient Cp (4, B) estimation of an offshore wind turbine using ANFIS, the use
of bell-shaped MFs gave the best Cp (4,/3) estimation. In [15] a Maximum Power
Point Tracking (MPPT) technique based on power coefficient estimation has been
proposed, the estimation was done using Recursive least square (RLS), for which
a third-order polynomial has been used. In [16] the authors proposed a
hierarchical intelligent system for wind turbine power prediction. The fusion of
MLP and ANFIS gave a significant reduction in prediction error.

The main objective of this study is to provide a practical and effective-
coast intelligent estimator based online data fusion of various machine learning
techniques for power coefficient of the Control Advanced Research Turbine
(CART) in order to remedy the following problems:
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e The traditionally implemented power coefficient lookup table requires a
lot of memory.

e The intermediate values of are determined by linear interpolation, while
the power coefficient is non-linear.

e The difference between recorded values even when machines are working
under the same conditions, which considerably affects the management of
wind farms.

2. Wind turbine aerodynamics

CART s a two-blades horizontal axis wind turbine, variable speed and
variable pitch operations with a rated energy of 600 kW. Table 1 summarizes the
main characteristics of the CART wind turbine.

Tablel

Characteristics of CART
Properties Value Unit
Rated power 600 (kW)
Hub height 38 (m)
Rotor diameter 43 (m)
Rated rotor speed 4.3646 (rad.s™)
Rated wind speed 13 (m.s?)
Peak power coefficient 0.4292 /
Optimal tip-speed ratio 8.5 /
Optimal pitch angle 1 (deg)

Wind turbine is a complex mechatronic system, designed to produce
electrical energy. However wind turbine can extract only a part of the wind kinetic
energy given in Eq. 1, the extracted energy does not generally exceed the BETZ
limit, this quantity is specific to each turbine and characterized by, Cp (4, £)which
expresses the capacity of wind energy extraction [5].

P, = %P”chp (4, p)V° (1)

Where P, (W) is the wind turbine power, p (kg.m™?), is the air density R (m) is
rotor radius , and v (m.s~1) the wind speed [5, 17].

CART power coefficient Cp (4.5) with negative values set to zero shown
in Fig. 1. It is given by a lookup table developed by NREL. This nonlinear
coefficient is function of A and f(deg). The Tip-speed ratio 4 refers to the ratio
of the tangential speed at the end of the blade and wind speed expressed as
follows:

1=%R (2)
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Fig.1 Cp (4, B8) for CART wind turbine
3. Machine learning paradigms
3.1 Artificial Neural Networks (ANNS)
3.1.1 Multi-Layer perceptron neural network (MLP)

The MLP network is a fully interconnected feedforward network.As
demonstrated in Fig. 2-a it consists of three or more layers which are input,
output and one or more hidden layers hidden expressed by a nonlinear activation
function. in this work a sigmoid function given by Eq. 3 is chosen.

1
R (0= l+e™
Where F; denotes the output of the j.;, hidden neuron .
The mathematical model of a neuron in the i** layer is given by Eq. 4 as follows:

o) :Zn“vvi F,(X)+h (4)

Where 0; is the output of i*® neuron, w;; denotes the weight between the .
neuron in the hidden layer and the i neuron in the output layer b, is the bias of
the i, neuron in the output layer.

(3)

3.1.2 Radial Basis Function Neural Network (RBF):

RBF neural network illustrated in Fig. 2-b has similar architecture as MLP
neural network. However, neurons at the hidden layer are activated by a radial
basis function. Were the output of each hidden neuron can be produced as
follows:

[x—ci
G,-(x)=exp[—#} (5)

(oF

Where ¢ is denotes the center of basis function and & is the function radius.
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The output layer for MLP is RBF is taken linear.
3.2 Adaptive neuro-fuzzy inference system

ANFIS is considered as the most efficient neural system, it was proposed
by J S Jang; whose architecture is equivalent to the first order Takagi Sugeno
system. ANFIS architecture shown in Fig. 2-c consists of five layers as follows:

a) Fuzzification layer: Is a subset of adaptive neurons4;(E;), which
makes the transition to the fuzzy domain. [18]. It expresses the membership
conditions of each input. The activation function of the neurons i of the first layer
is:

Oil = UA\ (X) (6)
Where (x) denotes node’s entry i and 4; is the linguistic label associated with the
node i. ANFIS inputs used in this study are the tip speed ratio A and pitch angle.

Both are fuzzified by bell-shaped membership function (MFs), such as:
1
U, (x)=

Y
1+{X_C‘}
ai

Where {a;, b;,c;} are premises parameters.
b) Product Layer: It is a subset of fixed neurons [18]. Each neuron
represents the firing strengths of a rule. Its activation function given by Eq. 8.
W, =U, (x)xU, (x) (8)
¢) Normalization layer: It ensures the normalization of the firing
strengths of each rule (weight), according to the previous output [18].
y— fori=12. 9)
W, +W,
d) Defuzzification layer: Is a subset of adaptive neurons which receives
the normalized weights and calculates the consequent parameters such as:

O =Wf, =W, (pX+qy+r,) (10)

Where W is the normalized weights. The polynomial parameters {P;.q; r;} are
called consequent parameters.

e) Output layer: It consists of a single fixed neuron, which deliver the

ANFIS output by summing received signals from the defuzzification layer such
as:

(7)

O° = X W, (11)
The training process allows modifiable parameters adaption of the fuzzy

inference system (FIS). The hybrid method is a two-step algorithm, using the
gradient descent, and the least squares method. Each training iteration includes
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forward and a backward pass. The least squares method adapts the polynomial
consequent parameters during the forward pass, where premise parameters are
fixed. While the gradient descent method adjusts the membership function
parameters “’premise’’ where consequent parameters are fixed. [19].

Fig 2. Architectures of the machine learning techniques used for power coefficient estimation. a)
MLP, b) RBF, c) ANFIS

3.3 Ordered Weighted Averaging (OWA) operator

The ordered weighted averaging (OWA) operator, initially proposed by
Yager [20] is a data fusion technique consisting of amalgamating various
homogeneous data sets acquired from several sensors in order to increase its
accuracy and consequently provide a better observation compared to the received
one. Mathematically, the OWA operator is defined as follows:

Definition 1 [21] : An ordered weighted averaging (OWA) operator of

dimension n is a mapping F:[0" —[ that has an associated n-vector:
W =] W, Wy, W, W, | (12)

n

Such that w, €[0,1] for1<i <n; verifying:

D W =W LW, =1 (13)
i=1
Furthermore:
F(a,-a,)=) wb, =wb +..+wb, (14)
j=1

Where b, is the j.;, largest element of the collection of objects {b,...,b,}. The
function value  F(a,..,a,)determines the aggregated value  of
arguments{a,,...,a, } .

As defined in the Eqg. 14 the determination of weights is crucial in the data fusion
process. In the literature one can find various methods for the determination of
weights, among others: the orness measure method proposed by Yager [20]. The
orness measure reflects the "andlike™ or "orlike™ aggregation result of an OWA
operator, A number of approaches have also been proposed to obtain the
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associated OWA operator, namely to quantify the guided aggregation initiated in
[20, 22]. Another concept commonly used in the aggregation process is that of
fuzzy linguistic quantifiers. It consists in expressing human expertise using a
natural language: "most", "many", "at least half", "some" and "few" [23]. . Yager
[22, 24] classified fuzzy linguistic quantifiers into three classes: Regularly
Increasing Monotone (RIM), Regularly Decreasing Monotone (RDM) and
Regular Uni-Modal (RUM). Both RDM and RUM quantifier can be generated
from RIM quantifier. He also used the RIM quantifier. In this work the RIM
quantifier defined below is chosen to obtain the decision function in the OWA
aggregation

Definition 2 [25, 26] : A fuzzy subset Q, of the real line is called a regular

increasing monotone (RIM) quantifier, if it satisfies the following conditions:
Qf (O) =0
Qi(M=0 (15)
Qi (x)2Q(x),x2y

The RIM quantifiers can be used to express terms like all, most, many and at least
a. The commonly used quantifier is Basic linguistic quantifier expressed as
follows:

Q =r" (16)

Where the weights are calculated as follows:

W, :(ija—(i;lja, fori=1,..,n 17)
n n

By taking « >0 one can assure that the quantifier is a RIM quantifier [26].
4. Proposed fusion algorithm

In order to improve the accuracy of the power coefficient estimation, a
new methodology for fusion of machine learning techniques Fig. 3 is proposed
and is detailed in this section.

a) Data collection and preparation.

b) Determination of optimal architectures of machine learning techniques.
¢) Data fusion based on Fuzzy Linguistic Quantifier.
d) Statistical analysis of estimators.
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Fig. 3. Chart of the proposed algorithm

As a driven data method, data collection and processing is essential for the
construction of power coefficient estimators. For this purpose, lookup table data
of the CART wind turbine was used. In this study, the power coefficient Cp (4,/3)
is using MLP as well as ANFIS with two inputs and one output, which are tip-
speed ratio &, £ (deg) and Cp (4,8 )respectively. The total number of samples
forming (input/output) couples is 634. All samples were carefully divided, where
443 (69.87%) are used for training and 191 (30.12%) are used for networks test.
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A series of preliminary experiments were performed before implementing
the OWA fusion algorithm proposed in this study, in order to determine the
boundaries of the architectures of the artificial intelligence techniques proposed in
the previous section. The strategy adopted in this phase is to increase the number
of elements in the hidden layer (for MLP and RBF based models from 10 to 20,
then performing a series of experiments on ANFIS, by varying the type of MFs
and the type of fuzzy output whenever necessary. At last and not least optimizing
the o until it reaches the value that the OWA operator-based decision making
algorithm starts to diverge beyond it.

Once the limits of the proposed algorithm being shown in Fig. 3 are fixed
a real-time simulation is performed and the optimal model with the best
estimation capability is obtained without overlearning. Finally, the statistical
indicator root mean squared error (MSE). expressed in Eq. 18 is used to evaluate
the four generated models.

n 2
MSE:%Z(Xi—Yi) (18)
n=1
Where n is the number of samples, X; indicates estimated value and Y; is the
measured value of one data point.

4. Results and discussions

In this section we will discuss the envisaged approach in order to reach the
best estimate of the power coefficient. The proposed algorithm has been
developed in MATLAB environment, the maximum number of neurons in the
hidden layer m=20, 500 epochs. Regarding the OWA-based fusion method o
ranges from 0.1 to 1.5 with a step-size of 0.1. In addition, the algorithm repeats
the training process 3 times (J=3). The best architecture among J runs is then used
for the fusion.

For the estimation of Cp (4.58) using ANNSs, a static architecture of MLP
and RBF has been envisaged, The maintained structure Consists of 20 neurons
trained based on Livenberg Marquad Algorithm (LM) with an iteration rate equal
to 0.25. As illustrated in Fig. 4 a-b, the RBF neural network perform well than
MLP. The obtained result mainly depends on the type of transfer function. A test
has also been carried out which validates the superiority of RBF over MLP.
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Fig. 4: Recorded MSE. a) MLP and RBF train, b) MLP and RBF test, c) ANFIS train, d) ANFIS
test

The construction of ANFIS estimator begins with the construction of an
initial FIS. In the present study, the initial FIS system is built using the grid
partitioning identification method. The Optimal result giving a minimal error is
obtained by using 6 Bell-shaped MFs for both A and B(deg) with linear fuzzy
output as demonstrated is Fig. 4 c-d. It is inferred that the fact of increasing the
number of MFs is detrimental to the results, which corroborates recommendations
given by [18, 19]. It is explained by the influence of the number of modifiable
parameters which depends directly on the number and type of MFs. 36 significant
rules generated from the system.

0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 5. Influence of a factor on OWA based fusion algorithm
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Fig. 6. Optimal weighs of OWA operator
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Shown in Fig. 5, the influence of the a factor on the precision of power
coefficient estimation. The result shows that the optimal value leading to the
minimum error is 1.5. The obtained weight vector W = [0.192,0.352, .456]7
shown in Fig. 6, the obtained values are explained by the fact that the most
important factor giving which leads to the best decision is the estimation provided
by ANFIS as it is more precise compared to MLP and RBF estimators.

To evaluate proposed models’ efficiency, the errors produced by MLP and
ANFIS estimators in training and testing phases are plotted in Fig.7. It is found
that ANFIS estimator provides the best estimation compared to MLP with small
and smooth error for both training and testing data sets. Fig. 7-a shows the
obtained MLP and ANFIS results against lookup table data in the training phase,
while Fig. 7. b, illustrates estimation results obtained in the test.

Error
Error

0 100 200 300 400 0 50 100 150

Sample number Sample number
| MLP —— RBF ANFIS Aggregated |

Fig. 7 Estimation errors: a) training error; b) testing error.

The obtained results show that the proposed fusion algorithm based OWA
operator gave a spectacular reduction of MSE compared to ANFIS, which reaches
the double for training data and oscillates around 61% for the testing set as shown
in Table 2. Thus, it clearly proves that the proposed fusion algorithm has more
accurate nonlinear mapping capability when compared to other estimators.

Table 2
Comparative statistical analysis
Statistical indicators MSE

Phase Train Test

MLP 2.72E-05 3.36E-05
RBF 1.49E-05 2.94E-05
ANFIS 1.32E-05 2.85E-05
Aggregated 6.15E-06 1.75E-05
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Fig. 8. Cp (A, ) curve for CART wind turbine

Fig. 8. shows a graphical comparison of power coefficients Cp (4.8) for
optimal pitch angle £ = 1(deg). Maximum Cp (4,8) value of the CART wind
turbine is 0.4292, however estimated values by MLP, RBF, ANFIS and fusion
algorithm, are 0.432, 0.424, 0.425 and 0.426 respectively. Hence, the proposed
estimators can be considered as an alternative method for power coefficient
determination providing an efficient prediction which can reach the maximum
value of the power coefficient Cp (4, ) and also overcomes the problem of linear
interpolation for any intermediate value.

One of the major advantages of using this algorithm is its easy hardware
implementation, since the OWA operator is only a set of weights modifying
information from different sensors. The proposed algorithm remains a cost-
effective solution that can be implemented on FPGA chip, or other commercially
available technologies [27]. Moreover, the proposed estimator overcomes the
linear interpolation weakness for the intermediate values of the look-up table and
can be used to perform serval control strategies of wind turbine.

5. Conclusion

Wind fluctuations, as well as the determination of optimal operating
points, represent the main control problems of variable speed wind turbine. In the
present paper, a new machine learning techniques fusion based on OWA operator
is proposed for power coefficient Cp (4, 5) estimation of the CART wind turbine,
and Some properties of the OWA operator based on Fuzzy Linguistic Quantifier
are discussed. The proposed algorithm implemented on MATLAB give a good
approximation of the power coefficient. The main inferences drawn from the
present study are:

e Statistical analysis shows that Fusion based OWA operator provides the
best estimation compared to MLP, RBF and ANFIS.
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e ANFIS' response does not only depend on the number, type of MFs and
the training algorithm but also on the quality of the database.

e ANFIS presents a powerful estimation tool but suffers from training time
problem, mainly due to the number and type of MFs. Moreover, MLP
remains faster than ANFIS with a satisfactory result.

e The a factor is a crucial factor for weight determination when using a
Fuzzy Linguistic Quantifier, therefore the search for its optimal value is
essential.

The proposed estimator performs well with the nonlinear nature of the
wind turbine and gives an accurate estimate of the power coefficient. As a future
work, further real time control strategies need to be conducted to investigate the
effect of the proposed power coefficient estimator on variable speed wind turbine.
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