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In the framework of Fractal Theory of Motion for the Scale Relativity 

Theory with arbitrary and constant fractal dimensions, dynamics in complex systems 

associated to the fractal-non-fractal transition are analyzed. Working with the 

assumption that these dynamics are described by means of fractal curves, Lorenz 

type behaviors become “operational” through a Galerkin method. Then Rayleigh 

and Prandtl effective numbers are specified both by means of classical kinetic 

coefficients and scale resolution while the dynamics variables act as the limit of a 

family of mathematical functions, non-differentiable for non-null scale resolution. 
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1. Introduction 

 Lorentz’s classical model used in the description of the various dynamics 

[1,2] of the complex systems [3,4] are generally applied under the paradigm of 

differentiability of the core variables describing the physical system. The positive 

results of such a mathematical approach should be understood sequentially, on the 

regions where differentiability is still respected. However, when attempting to 

describe non-linear systems and chaotic behavior of the dynamics of the complex 
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systems [3,4] the differentiable mathematical procedures should be altered. With 

such a change at task, the aim is to remain tributary to differentiable mathematical 

procedures in the description of the various dynamics of the complex systems. 

Thus, is becoming necessary to introduce the scale resolution explicitly in the 

expression of physical variables of the system and implicitly in the fundamental 

dynamics equations that govern the system. The final system will thus contain 

variables that will dependent on both spatial and time coordinates and scale 

resolution. Consequently, instead of operating for example with a single variable 

described by a strictly non-differentiable mathematical function, we will use only 

approximations of these mathematical functions obtained by averaging it at 

various scale resolutions. Moreover, any variable designed to describe various 

dynamics of the complex systems will work as the limit of a family of 

mathematical functions, this being non-differentiable for zero scale resolution and 

differentiable for non-zero scale resolution. 

 This approach obviously involves the development of new geometrical 

structures along with a new class of models for which the laws of motion, 

invariant to the spatial and temporal transformations, must be integrated in scale 

laws, which are invariant to the scale transformations. Such a geometrical 

framework can be based on the concept of a fractal the Fractal Theory of Motion 

either in the form of Scale Relativity Theory in Nottale’s sense [5,6] or in the form 

of  Scale Relativity Theory with arbitrary and constant fractal dimension and 

becomes functional in the description of the various dynamics of the complex 

systems. Fractal concepts have also been usefully incorporated into models of 

biological processes, including epithelial cell growth, blood vessel growth and 

configuration [7], bone and vascular pathology and neuropathology, modeling of 

biological processes using fractals and other miscellaneous applications [8,9], or 

integrative models for fractal description of the particular structure parameters 

[10]. 

 So that, in the present paper, using the Scale Relativity Theory with an 

arbitrary but constant fractal dimension, Lorenz type behaviors associated to 

fractal-non-fractal transitions in the dynamics of the complex systems will be 

analyzed. 

 

2. Mathematical model 

 The mathematical model proposed here is based on the principle that the 

dynamics of thermal nature seen in complex systems, associated to the fractal-

non-fractal transition are described by mean of fractal curves. Starting from this 

paradigm the time derivative d/dt is substituted by the scale covariant derivative 

[11-13]: 

                                  (1) 
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where: 

                                            (2) 

In the previous relations Xl are the fractal spatial coordinates, t is the non-

fractal temporal coordinate and also affin parameter of the motion curves,  is 

the complex velocity with  the real part, differentiable and scale resolution 

independent and  the imaginary part, non-differentiable and scale resolution 

dependent, dt  is the scale resolution,  is the pseudo-tensor associated to the 

fractal-non-fractal transition,  has constant coefficient through which the 

thermal type fractalization is imposed (  the forward thermal processes and  

for the backwards ones), f() is the singularity spectrum of order ,  is the 

singularity index and DF is the fractal dimension of the motion curves [11]. These 

are many modes and thus a various selection of definitions of fractal dimensions: 

fractal dimension in the Kolmogorov sense, fractal dimension in the Husdorff-

Besikovici sense, etc. [11]. 

 Selecting one of these definitions and operating with them in the thermal 

type fractal dynamics of the complex systems, the value of the fractal dimension 

must be constant and arbitrary: DF2 for correlative thermal type fractal 

processes, DF2 for non-correlative thermal type etc. In such a conjecture, we can 

identify not only the “areas” of the thermal type multifractal dynamics of the 

complex systems that are characterized by a certain fractal dimension, but also the 

number of “areas” whose fractal dimension are situated in an interval values. 

Moreover, through the singularity spectrum f() we can identify classes of 

universality in the thermal type multifractal dynamics of the complex systems, 

even when strange attractors have different aspects [2]. In such conjecture, if the 

fractalization of thermal type dynamics of the complex systems is accomplished 

by Markov stochastic processes: 

                                                    (3) 

where λ is a coefficient specific to the multifractal – nonmultifractal transition and  

is the pseudo-tensor of Kronecker, then the scale covariant derivative (1) 

becomes [2-8]: 

                                       (4) 

If multifractalization of the thermal type dynamics of the complex systems is 

accomplished through non-Markov stochastic processes [2,8]:     

 
                                         (5) 
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where λ and σ are coefficients specific to the multifractal-non-multifractal 

transition, then the scale covariant derivative (1) takes the form: 

                          (6) 

In such conjecture, the dynamics of momentum, mass and thermal transfer 

equations associated to fractal-non-fractal transition using the scale covariant 

derivative (4) are [11]: 

 (7) 

where 

                                                          (8) 

is the velocity associated to the fractal-non-fractal transition, 

                            (9) 

is the  multifractal specific force, p is the hydrostatic pressure,  is the density of 

states,  is the effective viscous force associated with the 

fractal-non-fractal transition, T is the temperature,   is the kinematic viscosity 

coefficient, and  is the thermal diffusibility coefficient. 

 Let us now consider the following assumptions: 

i) the density of states is constant,  , excepting the 

momentum equation; 

ii) we define the effective kinematic viscosity coefficient by means of 

relation: 

                                                (10) 

iii) between the velocity associated to fractal-non-fractal transition and the 

density of states there is the relationship: 

                                                 (11) 

iv) the thermal expansion associated to the fractal-non-fractal transition is 

linear, 

                                                (12) 

where  is the thermal expansion coefficient associated to the fractal-non-fractal 

transition, 0 is the initial state density and T0 is the initial temperature. 



Lorenz type behaviors associated to fractal-non-fractal transition in the dynamics…       305 

v) we define the effective thermal diffusibility coefficient through the 

relationship: 

                                             (13) 

vi) The multifractal specific force is constant (its average is non-null)  

With these assumptions the equations system (7) becomes: 

                                    (14) 

where  is density of perturbation states: 

 
                                                    (15) 

 The thermal type fractal anomalous convection in complex systems 

occurs when the multifractal specific force resulting from the thermal expansion, 

 exceeds the effective viscous force   . Then, we can define 

Rayleigh's effective number: 

                                                      (16) 

Its expression may be attributed to the relationship (12) given in the form: 

                                                 (17) 

and to the last relationship (14) given as form: 

                                                            (18) 

where we considered that the thickness d of the complex systems is subject to 

gradient: 

                                                    (19) 

By substituting (17) and (18) into (16) the Rayleigh’s effective number takes the 

form: 

               (20) 

The thermal type multifractal anomalous convection occurs for the condition: 

                                                     (21) 

R being dictated mainly by the thermal gradient  and multifractal degree given 

both by  and multifractal specific force (9). 

 We choose as the reference state, the resting state, vs=0, for which the 

first and last equation of the equations system (14) become: 

                            (22) 
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where  is the unit vector of direction Oz.  

 We also think that the pressure and temperature vary only along the Oz 

direction. For temperature, the boundary conditions are: 

                                    (23) 

 Now integrating the second equation (22) with these boundary 

conditions, the dependence of the temperature in the direction Oz is linear and it 

has the expression: 

                                                   (24) 

Substituting (24) in the first equation (22) and integrating, we find: 

                                      (25) 

The characteristics of the complex system in this state are independent of the 

"effective kinetic coefficients"   and  which occurring in the equations system 

(14). 

 We continue to analyze the stability of the reference state by the small 

perturbation method (Galerkin Method [1-3]). The perturbation state is explicitly 

explained by relationships: 

 
                                        (26) 

 

 
 As it results from the above relationships, perturbations are functions 

that depend on position, time, and scale resolution. Substituting (26) in the 

equations system (14) and taking into account (24) and (25), the following 

equations system for perturbations, in linear approximation, is obtained:  

 
                                                   (27) 

 
We introduce the non-dimensional variables into the equations system (27) based 

on the relationships: 

,  , , ,                (28) 

Replacing these variables in the equations system (27), and renouncing for 

simplicity to the indexing with the symbol “,” it results: 

 
 

                                                  (29) 

 

                                                 

where 
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                                    (30) 

is Prandtl's effective number dependent on both classical kinetic coefficients  and 

  the "multifractality degree" given by  

 For RRc, the reference state of the complex system becomes unstable. 

Choosing v = 0, the incompressibility condition of the complex system becomes: 

                                              (31) 

The above equation is satisfied if and only if: 

                                                 (32) 

where  is Lagrange type current function. Velocity fields must satisfy the 

conditions imposed on the interior and exterior surfaces in the form: 

                                                      (33) 

If the surfaces are assumed to be free, then the additional condition appears: 

 

                                                     (34) 

Now using Lagrange type current function, boundary conditions (33) and (34) are 

written as: 

                                       (35) 

Consider  on the form: 

                            (36) 

According to (32), the components of the speed fields will be: 

                                (37) 

 
In these conditions, the first equation (29) for directions Ox and Oz will be: 

                                (38) 

 
Deriving the first equation (38) versus z and the second equation (38) versus x, it 

results: 

                    (39) 

 
Adding these equations, we will obtain: 

         (40) 

The temperature being fixed on the two borders, we will have: 

                                                    (41) 

Let us consider  of the form: 
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           (42) 

Substituting in (40) the expressions for u, w,  and , it results: 

                                 (43) 

The equations of the multifractal thermal transfer will become: 

                            (44) 

 

 3. Results and Discussion  

 In the equations (43) and (44), for the amplitudes we make the following 

variable changes: 

                            (45) 

 
It results: 

 
                                                                                             (46) 

 
where: 

                                 (47) 

i.e Lorentz type multifractal system. 

 Lorenz type behaviors associated to fractal-non-fractal transition in the 

phase space are very complicated. In Figs .1 a-e only the influence of Prandtl 

effective coefficient is presented both for the same values of initial conditions 

( ) and the same values of parameters (r=28, b=8/3). 
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Figs. 1 a-e  Lorenz type behaviors associated to fractal-non-fractal transition in the phase space for 

various values of Prandtl effective coefficient (P1=4, P2=10, P3=24, P4=30, P5=80), for the same 

values of initial conditions ( ) and the same values of parameters 

(r=28, b=8/3). 

 4. Conclusions 

 Assuming that the dynamics of the complex systems associated to 

fractal-non-fractal transition are described by continuous but non-differentiable 

curves (multifractal curves), Lorenz type behaviors became functional in the 

framework of the Scale Relativity Theory with arbitrary but constant fractal 

dimension. Then: 

i) the dynamics are described by means of the scale covariant derivative;  

ii) the equations systems of momentum, mass and thermal transfer associated to 

fractal-non-fractal transition are obtained; 

 iii) through some constraints and using the Galerking method, the equations 

systems of momentum, mass and thermal transfer Lorenz type multifractal 

involve;  

iv) for Lorenz type multifractal system, Rayleigh and Prandtl effective numbers 

are specified both by means of classical kinetic coefficients (kinematic viscosity 

coefficient and thermal diffusion coefficient) and scale resolution;  

vi) for Lorenz type multifractal system, the dynamics variables act as the limit of 

a family of mathematical functions, non-differentiable for null scale resolution;  
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vii) only the influence of Prandtl effective coefficient on the dynamics of Lorenz 

type multifractal system is analyzed given the complexity of such system in the 

phase space.    
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