U.P.B. Sci. Bull,, Series A, Vol. 81, Iss. 4, 2019 ISSN 1223-7027

LORENZ TYPE BEHAVIORS ASSOCIATED TO FRACTAL-
NON-FRACTAL TRANSITION IN THE DYNAMICS OF THE
COMPLEX SYSTEMS

Cristina Marcela RUSU!, Florin TUDOSE?, Maria-Alexandra PAUN?, Mihai
FRASILA* Mihaela BARHALESCU?, Stefan Andrei IRIMICIUCS,
Vladimir-Alexandru PAUN’, Maricel AGOP!

In the framework of Fractal Theory of Motion for the Scale Relativity
Theory with arbitrary and constant fractal dimensions, dynamics in complex systems
associated to the fractal-non-fractal transition are analyzed. Working with the
assumption that these dynamics are described by means of fractal curves, Lorenz
type behaviors become “operational” through a Galerkin method. Then Rayleigh
and Prandtl effective numbers are specified both by means of classical kinetic
coefficients and scale resolution while the dynamics variables act as the limit of a
family of mathematical functions, non-differentiable for non-null scale resolution.
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1. Introduction

Lorentz s classical model used in the description of the various dynamics
[1,2] of the complex systems [3,4] are generally applied under the paradigm of
differentiability of the core variables describing the physical system. The positive
results of such a mathematical approach should be understood sequentially, on the
regions where differentiability is still respected. However, when attempting to
describe non-linear systems and chaotic behavior of the dynamics of the complex
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systems [3,4] the differentiable mathematical procedures should be altered. With
such a change at task, the aim is to remain tributary to differentiable mathematical
procedures in the description of the various dynamics of the complex systems.
Thus, is becoming necessary to introduce the scale resolution explicitly in the
expression of physical variables of the system and implicitly in the fundamental
dynamics equations that govern the system. The final system will thus contain
variables that will dependent on both spatial and time coordinates and scale
resolution. Consequently, instead of operating for example with a single variable
described by a strictly non-differentiable mathematical function, we will use only
approximations of these mathematical functions obtained by averaging it at
various scale resolutions. Moreover, any variable designed to describe various
dynamics of the complex systems will work as the limit of a family of
mathematical functions, this being non-differentiable for zero scale resolution and
differentiable for non-zero scale resolution.

This approach obviously involves the development of new geometrical
structures along with a new class of models for which the laws of motion,
invariant to the spatial and temporal transformations, must be integrated in scale
laws, which are invariant to the scale transformations. Such a geometrical
framework can be based on the concept of a fractal the Fractal Theory of Motion
either in the form of Scale Relativity Theory in Nottale's sense [5,6] or in the form
of Scale Relativity Theory with arbitrary and constant fractal dimension and
becomes functional in the description of the various dynamics of the complex
systems. Fractal concepts have also been usefully incorporated into models of
biological processes, including epithelial cell growth, blood vessel growth and
configuration [7], bone and vascular pathology and neuropathology, modeling of
biological processes using fractals and other miscellaneous applications [8,9], or
integrative models for fractal description of the particular structure parameters
[10].

So that, in the present paper, using the Scale Relativity Theory with an
arbitrary but constant fractal dimension, Lorenz type behaviors associated to
fractal-non-fractal transitions in the dynamics of the complex systems will be
analyzed.

2. Mathematical model

The mathematical model proposed here is based on the principle that the
dynamics of thermal nature seen in complex systems, associated to the fractal-
non-fractal transition are described by mean of fractal curves. Starting from this
paradigm the time derivative d/dt is substituted by the scale covariant derivative
[11-13]:

d a 1 :-"r (o -1
£ =9, +7, +;(dr)[ sl pikg 5, (1)
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where:
vi=1v) — it}
D:k — d!k _ I'CI”{
d* =L A% — AL Ak )

d* =L A% + ALk
a=al(Dg),i =v-1, Lk=1,23

In the previous relations X' are the fractal spatial coordinates, ¢ is the non-
fractal temporal coordinate and also affin parameter of the motion curves, V'is
the complex velocity with Vg the real part, differentiable and scale resolution
independent and Vi the imaginary part, non-differentiable and scale resolution
dependent, dt is the scale resolution, D' is the pseudo-tensor associated to the
fractal-non-fractal transition, A% has constant coefficient through which the
thermal type fractalization is imposed (4% the forward thermal processes and AL
for the backwards ones), f{e) is the singularity spectrum of order o, « is the
singularity index and Dr is the fractal dimension of the motion curves [11]. These
are many modes and thus a various selection of definitions of fractal dimensions:
fractal dimension in the Kolmogorov sense, fractal dimension in the Husdorff-
Besikovici sense, etc. [11].

Selecting one of these definitions and operating with them in the thermal
type fractal dynamics of the complex systems, the value of the fractal dimension
must be constant and arbitrary: Dp<2 for correlative thermal type fractal
processes, Dr>2 for non-correlative thermal type etc. In such a conjecture, we can
identify not only the “areas” of the thermal type multifractal dynamics of the
complex systems that are characterized by a certain fractal dimension, but also the
number of “areas” whose fractal dimension are situated in an interval values.
Moreover, through the singularity spectrum f(a) we can identify classes of
universality in the thermal type multifractal dynamics of the complex systems,
even when strange attractors have different aspects [2]. In such conjecture, if the
fractalization of thermal type dynamics of the complex systems is accomplished
by Markov stochastic processes:

ALAL =2 4t =248" 3)
where A is a coefficient specific to the multifractal — nonmultifractal transition and
8 is the pseudo-tensor of Kronecker, then the scale covariant derivative (1)
becomes [2-8]:

%=¢+W¢—umdﬁw¢ﬁ@ 4)
If multifractalization of the thermal type dynamics of the complex systems is
accomplished through non-Markov stochastic processes [2,8]:
d = AL AL — AL AL = 4usT
dt =240 + AL AL = 4067 (5)
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DU =4(u —iog) 5"
where A and o are coefficients specific to the multifractal-non-multifractal
transition, then the scale covariant derivative (1) takes the form:

L5, + 7%, + (u—io) (@)l @l g (©)

In such conjecture, the dynamics of momentum, mass and thermal transfer
equations associated to fractal-non-fractal transition using the scale covariant
derivative (4) are [11]:

v+ (v-Vjv=— 1—” +2 [v; Vv, + A[dr)['“'}'ifﬂ]_lauF} + [u - A[dt]['s’f.:ﬁ}]-i] Ap
d.p + V.(pv) = pV.v — A(dt) [-’Irf':“:']_lﬁp
8,T+ (v-V)T = [;; - A(dt)['="fn:«:|]-1] AT

(7
where
v=V, - Vg (8)
is the velocity associated to the fractal-non-fractal transition,
F=2 [VF YV, +A(dD)L 7 'iﬂ?]'iavF] ©)

is the multifractal specific force, p is the hydrostatic pressure, p is the density of
EY I -1 . . . . .
states, [u - A[dtj[ ' '~“3'] ] Av is the effective viscous force associated with the

fractal-non-fractal transition, 7 is the temperature, v 1is the kinematic viscosity
coefficient, and y is the thermal diffusibility coefficient.
Let us now consider the following assumptions:
1)  the density of states is constant, p = p, = const. , excepting the
momentum equation;
11)  we define the effective kinematic viscosity coefficient by means of
relation:

2 | - -1
o=u —.l(dtj[ /@) (10)
ii1)  between the velocity associated to fractal-non-fractal transition and the
density of states there is the relationship:

Vv = A(dr)['*’f 'ifﬂ']'“;—‘J (11)

iv) the thermal expansion associated to the fractal-non-fractal transition is
linear,

p=pp[1+a(T—Ty)] (12)

where @ is the thermal expansion coefficient associated to the fractal-non-fractal
transition, po is the initial state density and 7o is the initial temperature.
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v) we define the effective thermal diffusibility coefficient through the
relationship:

7= u— gl /sl (13)
vi)  The multifractal specific force is constant (its average is non-null)
With these assumptions the equations system (7) becomes:
o+ (v Vo= -2+ (142)f + 80
Vo =0 ) (14)
. T+ (v-V)T = gAT
where dp is density of perturbation states:
p=py+ 6p

dp << p, (15)
The thermal type fractal anomalous convection in complex systems
occurs when the multifractal specific force resulting from the thermal expansion,

(8p/py)f exceeds the effective viscous force VAw . Then, we can define
Rayleigh's effective number:

(/o0 )
R = (16)
Its expression may be attributed to the relationship (12) given in the form:
% = aAT = ad (17)
and to the last relationship (14)Dgiven as form:
vt (18)

where we considered that the thickness d of the complex systems is subject to
gradient:
B== (19)
By substituting (17) and (18) into (16) the Rayleigh's effective number takes the
form:
R="dt = — T (20)
i v—..-:lI:ﬁ!r':l { el 'Hg—/{{dr} fFledl™

The thermal type multifractal anomalous convection occurs for the condition:
R = Rc:*iric (21)
R being dictated mainly by the thermal gradient £ and multifractal degree given

both by A(dt) [_"rf ':“3']_1 and multifractal specific force (9).
We choose as the reference state, the resting state, v=0, for which the
first and last equation of the equations system (14) become:
vps = _Psff = —f [1 - ':E(Ts - Tﬂj]ff
AT, =0 (22)
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where Z is the unit vector of direction Oz.
We also think that the pressure and temperature vary only along the Oz
direction. For temperature, the boundary conditions are:
T(x,v,0) =T, T(x,y,d)=T, (23)
Now integrating the second equation (22) with these boundary
conditions, the dependence of the temperature in the direction Oz is linear and it
has the expression:

T,=T,— pz (24)
Substituting (24) in the first equation (22) and integrating, we find:
p.(2)=po — pof (1+77)z (25)

The characteristics of the complex system in this state are independent of the
"effective kinetic coefficients" Vv and g which occurring in the equations system

(14).

We continue to analyze the stability of the reference state by the small
perturbation method (Galerkin Method [1-3]). The perturbation state is explicitly
explained by relationships:

T =T,(z)+ 6(r,t.dt)
p =p.(2) +8p(r.t, dt) (26)
p =p,(z) + p(r,t,dt)

v =8v(rtdt) = (u,v,w)

As it results from the above relationships, perturbations are functions
that depend on position, time, and scale resolution. Substituting (26) in the
equations system (14) and taking into account (24) and (25), the following
equations system for perturbations, in linear approximation, is obtained:

1
d.0v=——Vip+ UAdv+ fab:z
Po
V.dv=10 27)
9.8 = Bw + Af
We introduce the non-dimensional variables into the equations system (27) based
on the relationships:

Izz}EF:EEHI=(TFT5V’=EF5P“=?mmj (28)
T faEd? d dz

Replacing these variables in the equations system (27), and renouncing for
simplicity to the indexing with the symbol “,” it results:
P av+(v-V)v)=—-Vp+ 6z +Av

Vv =0 (29)

9.6 + (v-V)8 = Rw + Af
where
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_ _ [za"_f.:a;.]—l
; _y A(dt) (30)

P= ,
#—A{dtjlzf'f':aﬂ‘l

=

is Prandtl's effective number dependent on both classical kinetic coefficients v and

p the "multifractality degree" given by A({dt) [_“'rf ':“3']_1
For R>R., the reference state of the complex system becomes unstable.
Choosing v = 0, the incompressibility condition of the complex system becomes:

w, +w, =0 31)
The above equation is satisfied if and only if:
= _]103’ w = ]1{'r.r (32)

where ¥(x, ¥, z) is Lagrange type current function. Velocity fields must satisfy the
conditions imposed on the interior and exterior surfaces in the form:
w| =0 (33)

If the surfaces are assumed to be free, then the additional condition appears:

E= il."rj

2u =0 (34)

d= z=+1f,
Now using Lagrange type current function, boundary conditions (33) and (34) are
written as:

Welony1, =0, .l 1, =0 (35)
Consider ¥’ on the form:
w(x,z t,dt) =y, (t,dt) cos(mz) sin(gx) (36)
According to (32), the components of the speed fields will be:
u = my, (t, dt) sin(mwz) sin(gx) (37)

w = qy, (t, dt) cos(mz) cos(gx)
In these conditions, the first equation (29) for directions Ox and Oz will be:
P Mu, +uu, +wu_)=—p, + Au (38)
P Y w, +uw, +ww)=—p +Aw+6
Deriving the first equation (38) versus z and the second equation (38) versus x, it
results:

p~t [um + % (uu, + wuzj] = P+ % (Au) (39)
de

_ d d
p~t [Wu + —(uw, + Wsz] =—p_. +—(Aw) + —
dx dx

Adding these equations, \gg will obtain:
p~t [—(&q{r)r + % (rew, +wu_)— ;—x (uw, + wwzj] =—AyP—8, (40)

The temperature being fixed on the two borders, we will have:

Elz_,ilf,rﬂ =0 (41)

Let us consider 0 of the form:
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B(x,z,t,dt) = 8,(t,dt) cos(mz) cos(qx) + 6, (t,dt) sin(2mz) (42)
Substituting in (40) the expressions for u, w, @and ¥, it results:
—_] = E ] y
Pl = 25— (r? + )Y, (43)

The equations of the multifractal thermal transfer will become:
8, = —mqy, 6, + qRy, — [H: + q:j -8, (44)

. 1 .
g, = E?Ff]flﬁ’iﬂi —4m°f,
3. Results and Discussion

In the equations (43) and (44), for the amplitudes we make the following
variable changes:

t=@ +qMt, X=7Z (45)
g mq-
- g, z=—TT o,
V2(w? +¢2)2 " (m*+q?%)° ~
It results:
X=P(Y—X)
¥Y=—-XZ+4+rX-Y (46)
Z=XY—-bZ
where: ) )
_ q° _ am”
r= (m2+q2)" R, b= (m2+q7) (47)

1.e Lorentz type multifractal system.

Lorenz type behaviors associated to fractal-non-fractal transition in the
phase space are very complicated. In Figs .1 a-e only the influence of Prandtl
effective coefficient is presented both for the same values of initial conditions
(X¥p = LY, = 5,Z, = 10) and the same values of parameters (r=28, b=8/3).

0 5
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Figs. 1 a-e Lorenz type behaviors associated to fractal-non-fractal transition in the phase space for
various values of Prandtl effective coefficient (P;=4, P,=10, P;=24, P4,=30, Ps=80), for the same

values of initial conditions (Xy = 1,¥y = 5,Z; = 10) and the same values of parameters
(r=28, b=8/3).

4. Conclusions

Assuming that the dynamics of the complex systems associated to
fractal-non-fractal transition are described by continuous but non-differentiable
curves (multifractal curves), Lorenz type behaviors became functional in the
framework of the Scale Relativity Theory with arbitrary but constant fractal
dimension. Then:

1) the dynamics are described by means of the scale covariant derivative;

i1) the equations systems of momentum, mass and thermal transfer associated to
fractal-non-fractal transition are obtained;

i11) through some constraints and using the Galerking method, the equations
systems of momentum, mass and thermal transfer Lorenz type multifractal
involve;

iv) for Lorenz type multifractal system, Rayleigh and Prandtl effective numbers
are specified both by means of classical kinetic coefficients (kinematic viscosity
coefficient and thermal diffusion coefficient) and scale resolution;

vi) for Lorenz type multifractal system, the dynamics variables act as the limit of
a family of mathematical functions, non-differentiable for null scale resolution;
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vii) only the influence of Prandtl effective coefficient on the dynamics of Lorenz
type multifractal system is analyzed given the complexity of such system in the
phase space.
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