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OBSERVER BASED ESTIMATION OF CHAOTIC DYNAMICS
WITH EXPONENTIAL NONLINEARITIES

Octaviana DATCU', Mihai STANCIU?, Alina PETRESCU-NITA’

The observability of a system with respect to its possible outputs is usually
evaluated using the rank criterion of the observability matrix or the observability
indices. In addition, this paper uses the properties of the differential equations
characterizing real-time electrical circuits which base their nonlinearities on the
exponential function. Interplay between mathematical tools and practical
considerations is done through observability coefficients, observability matrices and
high order sliding mode observers for the Colpitts chaotic system, representative for
such nonlinearities.

Keywords: observability coefficients, chaotic oscillators, observability matrices,
exponential nonlinearities, high order sliding mode observers.

1. Introduction

The aim of the present work is to contribute to the field of synchronization
between chaotic systems [1], targeting the chaos-based cryptography [2]. The
existent approaches evaluate the observability of a system with respect to its
possible outputs using the rank criterion of the observability matrix or the
observability indices [3].

In addition to the known approaches, this paper uses the properties of the
systems described by differential equations characterizing real-time electrical
circuits which base their nonlinearities on the exponential function, mostly
consequence of the Ebers-Moll model [4]. Due to its rapid growth or decay to
zero, together with the bifurcation parameters [5], which are according to an
evolution in bounded space, and time constants, due to the reactive elements in
such circuits [6], the exponential function as element of the observability matrix
enables or not the practical recovery of the original state space from a single data
series. For exemplification we choose the Colpitts oscillator (1), with bifurcation
parameters 4 =2g/Q and B =-1/Q, due to its popularity in the field.
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% = A(—e 2 +x3+1)
sz = AX3 (1)

. 1
X3 = —ﬂ(xl +X2) +BX3

Since the seminal work of Kennedy [7, 8] the Colpitts system was given
much attention in the literature. Its dynamics is studied from the perspective of
chaos theory in [9]. The two-way synchronization between chaotic oscillators is
analyzed in [10] in terms of the coupling coefficient required to get full
synchronization. A secure communication algorithm based on hybrid chaotic
dynamics implying the one-way synchronization between two Colpitts chaotic
oscillators is proposed in [11].

The remaining of the paper is organized as follows: Section 2 presents
some useful concepts and algorithms existent in the literature, Section 3 highlights
the main results of the paper, and some conclusions and perspectives are
formulated in Section 4. The simulation results are obtained with Matlab-
Simulink R2013a and the scripts and the models are available on
http://www.elcom.pub.ro/~od/

2. Concepts of observability and observability indices

Some theoretical tools from [3] and used in this work are particularized for
the tridimensional Roéssler system (2) from [12], with bifurcation parameters
(a1,a,a3) and x; =x;(t); j ={1,2,3}.

xl =—Xy — )C3
X‘z =-x1 tayxp (2)
X3 = ay + x3(x —az)

The state y=x3 is chosen as output of the system. The output is

sometimes called observable in the remaining of the paper. The measurement
function is the row vector Y =[0 0 1] the unity element indicating the

observable. The transformation map between the original state space
R3(x1,x2,x3) and the differential embedding viewed by the variable y = x3,

© ey 3 3
R}(z1,73,73), Where (21,29,23) = (3, ,7) is @1 R (x1,%,%3) = Rj(21,22,23),
with j =3, givenin (3).
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1 =X3

7y =x3 =ay +x3(x —a3)

(D3 . (3)

z3 = X3 = 13(x) —a3) + Xx3
2
= ay(x) —az) +x3(x —a3)” —x3(x; +x3)
If @ ;is injective and its Jacobian matrix has a determinant which is non-

null on the entire state space the original system is observable at any point in
space when the measurement function is given by the variable j, as stated by [3].

In order to define the Jacobian matrix for @ j to obtain observability

matrices with accurate interpretation regardless of the linearity or nonlinearity of
the transformation map engendered by the considered output, the Lie derivative

m ) ()
INCE W
‘ k=1 Xk

of the j—th component of the vector field f* and higher-

order derivatives L’}l (x)=Lg (L"ﬁ_ ! (x)) are used. The dimension of the map is m.

The observability matrix M3 defined in (4) for system (2) with y = x3 must be
full column rank, i.e. rank(M ) =3, to ensure full observability [3].
0 0 1
My = X3 0 X —a3 4)
G +20(x —a3) —x3 (3 —a3)” —xp —2x3
Matrix M5 depends on the dynamical variables with the determinant

| M5 |= —x32, thus being singular at x3 =0, i.e. it does not allow an inverse. So, the
Réossler system is not fully observable when its output is y = x3.

The degree of observability can be locally quantified by the observability
indices defined as the absolute value of the rate between the minimum eigenvalue

of the matrix [M JT M ;] and the maximum eigenvalue of the previously mentioned

matrix, computed at the any moment. Nevertheless, in this work, it is not the mean
of these local indices that will be computed, but the observability coefficients
obtained from the structure of the considered system. The steps of the algorithm
particularized in [13] for the Rossler map, are briefly presented below.

(a) Write the fluency matrix. In the Jacobian matrix of the system, replace
each constant element by 1, each nonlinear term by 1. Elements which are neither
constant, nor variable, will be replaced by 0.

(b) Define by Cj; the column vectors corresponding to each state of the

studied system, i corresponding to the measured state variable xj,x, or x3. A
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value of 1 indicates the state which was chosen to reconstruct the dynamics of the
system. Thus, Cjj=[1 0 01", Co=[0 1 0, C3=[1 0 0]". Matrices
H,; are obtained by replacing the diagonal element of the fluency matrix

corresponding to each variable by a dot and multiplying each of its rows by the
corresponding element in Cj ;. Count the number p;; of linear elements and the

number ¢ ; of nonlinear elements in Hj ;.

(¢) Replace the dot in Hj; by 0, 1 or 1, according to the fluency matrix,
and transpose Hj ;. Count the number of non-null elements of each row, defining
the new column vectors C ;.

(d) Obtain the matrices H;; by replacing each non-null element of

[Hl’,-]T by a dot and the rest of the elements by their corresponding elements in

the fluency matrix multiplied by the corresponding element of the column vector
C, ;- Count the number p, ; of linear and the number ¢, ; of nonlinear elements

in H2,i‘
(e) Compute the observability coefficients with formula (5), where
pitq,;=L1f p;=0and py;+qy; =1 1f py;=0.

", = 11 py n 9, - P, n 9>, .
2 P T4, (pl,i + ql,i) Prit 4, (pz,i + ‘b,i)

)

3. Main results

Observability coefficients for the Colpitts oscillator

According to the algorithm in [13] previously described in Section 2, we
compute the observability coefficients for the Colpitts oscillator (1). The Jacobian
matrix and the fluency matrix for the Colpitts oscillator are expressed in (6).

0 Ade ™ 4 0 1 1

J=| 0 0 Al— F= 0 1 (6)
_L _ b 1 1 1
24 24

Matrices H}; and the numbers of their linear and nonlinear elements:
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e 1 1 0 0 0 0 0 0
Hyp=[0 0 O0[;Hi,=|0 e 1L H;3={0 0 Of ;
0 0 0 0 0 0 1 1 e )

—>p=Lpio=Lp3=2 q1=1g12=0,913=0;

The transposed matrices [Hl,l-]T and the row vectors C; ; are expressed in:

000 000 001
(1 =|T 0 o, =[0 0 031" =[0 0 1}
1 00 010 001 ®

—Cy=[0 1 1G5 =[0 0 115C5=01 1 11";
Consequently the new matrices H;; and the corresponding numbers of

linear and nonlinear elements p, ;.4 ;, respectively, are given in (9).

011 001 01 e
Hyy=|* 0 1kHpp=|0 0 lkHp3=0 0 ef
e 1 1 0 o 1 1 1 e ©)

2> po1=4p22=3%p23=24q21=Lq22=0;913=1
Eventually, the observability indices are calculated in (10). We recall that
an observability index which equals unity indicates that the investigated system is

fully observable from the corresponding variable.
m =0.73;m, =Lin3 =0.89; (10)

Full reconstruction of the Colpitts’ dynamics when its output is x,.

According to the computation of the observability coefficients from (10),
choosing the second state of (1) as output, the system is observable at any point in
the state space. The corresponding transformation map is given in (11).

=%
D, 9z, =x, = Ax, (11)
1
zy =X, = Ax, =—E()c1 +x,)+ ABx,

The non-null determinant |M,|=0.5-4 of the observability matrix
guarantees that it is nonsingular, allowing an inverse. Thus, system (11) can be
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solved and the estimated states of (1) are in (12). This estimation is valid as a
consequence of the linearity of @,.

0 1 0 - 21 + 2322 - 223 x|
My=| 0 0 4|->X-= 3 =| x, (12)
~1/2 -1/2 4B 2,/ 4 X3

A four order sliding mode observer [14] is adapted in (13) to estimate
2 2[21 22 23]T, with M 2105 and Ey =24 =—0.5A226_Zl —2z3 + Bzy. The
additional state z4 = 23 was added in order to avoid chattering in the Z estimates.

21 =1 =22—5M1/4

~ 3/4 . ~
21—y Tsign(2 - p)

Z;\2 =Vy = 23 —1.5M1/3 22 —V1|2/3sign(22 _Vl)

(13)
23 =V3 =124 —3mt? Z3 —v2|1/2sign(23 -Vvy)
24 = E, —1.1Msign(z4 —v3)

For parameters (g,0)=(4.46,1.38) and initial conditions (xj,x5,X3) |;—o
=(0.1,0.8,0.9) the recovery of the original states x; and x3 of system (1) is

shown in Fig.1, for observer (13) initialized at (z;,z5,23) |;=0=(0.3,0.4, 0.8,0.2).

H
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1) & 10 15 20 2% 30 35 40 o El ] 15 i = kil 3= 40
time

firm

Fig. 1. The first (left) and the third (right) state of the Colpitts oscillétor when the output
is its second state. Original signals in solid line, estimated signals in dashed line.

The Colpitts dynamics observed from the perspective of its third state

When the output of system (1) is x,, the available information are in (14).
The observability matrix for system (14), given in (15), has the determinant

| M3 |= 0.25A_1e_x2, thus being singular for e > =0. So, system (14) has

multiple solutions or none at all whenever the signal x, satisfies e "2 = 0.
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Z1=X3
1
Dy :3z9 =3 =——(x7+ X )+ Bx 14
31122 =%3 2A( 1 +X)+Bx3 (14)
23 =33 =—0.5B(x + x0) A +(B% —1)x3+0.5¢ 2 0.5
0 0 1
My=|-054" ~0.547" B (15)

—05B47" —05B47 ' —05e B%_1

The equation e 2 =0 implies x, = —o0, which cannot be true, neither in

theory, nor in simulation, much less in analog implementation. Chaotic systems
have an evolution which is bounded in space. See [15] for an application where
the boundedness of chaotic evolutions is exploited to simplify an adaptive
controller structure, removing explicit knowledge of the nonlinearities of the
systems involved from the controller. Second, in simulation, the maximum value

reached by the variable x, is much smaller, so that e *2 # 0, at any point in the
state space. In analog circuitry x, is the voltage drop on a capacitor, which
cannot reach infinity. Consequently, system (14) can be solved, M3 being
nonsingular, and solutions are given in (16).
X =—2BZ, +In(2) +In(2; — Bz, + 23 +0.5) + 2BZ;
Xy =—In(2)—In(Z; — Bz + 23 +0.5) (16)
3=2
The argument of the natural logarithm has to be greater than zero in order
to obtain only real values, in (16). So,
22, -B2, +23+05)>0< e 2 >0 (17)
The estimates from (16) are obtained in simulation in Fig. 2. The
bifurcation parameters are (g,0)=(4.46,1.38), initial conditions are

(x1,%2,x3) ;=0 =1(0.1,0.8,0.9) and (zy,25,23)|,—0=(0.3,0.4, 0.8,0.2). Although
condition (17) is, from a theoretical point of view, always fulfilled, in simulation,
due to truncations and rounding specific to computation, e ™2 is not positive over
the entire domain. So, although the estimation of e ™2 and X;+X, is pretty

accurate as it can be observed on Fig. 2 (right), when e ™2 is asymptotically close
to zero, the signals x; and x, cannot be correctly estimated as seen in Fig. 2

(left). Due to the dependence that exists between the measured variable x, and the

unknown state x,, i.e. X, = Ax;, another possible approach in order to estimate
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the dynamics of the transmitter from its output would be to integrate the measured
variable x3 and use the settings for the measured state x, described above. The

integration constant is very difficult to obtain in practice. Therefore, this is not a
reliable solution.
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Fig. 2. The third state as output. Original signals in solid line, estimated signals in dashed
line. Inbold exp(—x,).Left: x| and % (top), x, and X, (bottom). Right: exp(-x,) and

exp(—x,) (top), x; +x, and X| + X, (bottom).
Approximate recovery of Colpitts’ dynamics observed by its state x;

The investigator does not know the other two states, either directly, or
through the derivatives of the output y =x,. The embedding of the original

dynamics seen from the perspective of this output is expressed in (18). The
corresponding observability matrix is given in (19).

=X

D 9z, =% =A(—e ™ +x; +1) (18)
1
z, =X, = AxX,e " + Ax; = —E(x1 +x,)+ A’ x,e ™ + ABx,

1 0 0
M= 0 Ae ™ A (19)
-1/2 -1/2-A’xe™ A(de™ +B)
The elements of the matrix M, depend on the unknown states x, and x,,
which cannot be recovered from the knowledge of the output x, and its

derivatives. As Ae ™ rapidly decays to zero, with increasing x,, the matrix (19)

can be rewritten as in (20), which is nonsingular with the determinant
| M |= A/2#0. Nevertheless, the recovery of the information is not complete,
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due to the regions of the state space where the approximation 4e”*2 =0 does not
hold. The solution X = (M £ )"'Z is valid due to the linearity of the new map.

1 0 0 1
Mlaux -l 0 0 4| X = —Z1+2Bzy —223 (20)
~1/2 —-1/2 4B Zp /4

Results of the estimation of the states of system (1) with X = (M 1“"")’12 ,

are presented in Fig. 3. The initial conditions are the same as for previous results.
The shifts of 24B, respectively 1, were removed, given that they are well known

by the legal receiver and the channel is noise free.
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Fig. 3. The states x, and xj of the Colpitts oscillator when y = x; for
(g,0)=(4.46,1.38). Approximation of 4exp(—x,) to zero (left) and estimation with the gradient

algorithm (right). Originals in solid line, estimated in dashed line, 4e™"2 in bold.
Comparing the estimations obtained by approximating 4exp(—x,) to zero

(left) and the estimations using the gradient algorithm (right), one can observe that
supplementary difficulties appear when exponential nonlinearities are neglected.

4. Conclusions

One of the applications for chaotic systems is chaos-based encryption. The
structure of the transmitter is well known, and the key is generally constituted by
the bifurcation parameters and the initial conditions of the system. The
synchronization between the transmitter and the receptor is essential in (secret)
communications. The output of the transmitter must be chosen so that it ensures,
at the receiving end, the most accurate estimation of its dynamics. The Colpitts
oscillator was considered, being representative for the chaotic circuits which base
their nonlinearity on the exponential function. When the scalar data series
corresponding to its second state, the output of the transmitter, is the only
available to the receiver, he can accurately estimate the original dynamics. This
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was proven by computation of the observability coefficients, also by sliding mode
observers. The exponential function enables or not the practical recovery of the
original state space from a single data series, represented by the first or the third
state of the Colpitts transmitter.
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