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BIFLATNESS, BIPROJECTIVITY, ¢y—AMENABILITY AND
¢—CONTRACTIBILITY OF A CERTAIN CLASS OF BANACH
ALGEBRAS.

A. R. KHODDAMI

Given a Banach algebra A and € € B§°) (the closed unit ball of A),
the biflatness, biprojectivity, p—amenability and p— contractibility of a new
Banach algebra A, are investigated.
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1. INTRODUCTION AND PRELIMINARIES

Let A be a Banach algebra. In [4] R. A. Kamyabi-Gol and M. Janfada
defined a new product “® ” on A by a ® ¢ = aec for all a,c € A, where ¢ is a

fixed element of the closed unit ball B%O) of A. (A, ®) is an associative Banach
algebra which is denoted by A.. Some miscellaneous algebraic properties of
A, such as when A, has a unit element, when an element of A, is invertible
and the necessary and sufficient conditions for the existence of involution on
A, are investigated in [4]. The Arens regularity and amenability of A, and
also derivations on A, and when is A. a C*—algebra are studied in [4].

For a Banach algebra A let Ay 1 A®A — A be the multiplication map, where
A®A is the projective tensor product. A, is an A—bimodule map that is a
bounded linear map such that A(a-u) = a-Aa(u) and Aa(u-a) = Aa(u)-a
for all @ € A and v € A®A. It is well known that the A—module actions on
A®A is defined by

a-(c®d)=a®d, (c®d)-a=c®da, a,c,deA.

A Banach algebra A is said to be biprojective if Ay : A®A — A has a
bounded right inverse which is an A—bimodule map. It means that there
exists a bounded linear map Ag : A — A®A such that Ay oAy = I4 and

Aa(ac) = a-Aa(e) = Aala) - ¢,
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for all a,c € A.

A Banach algebra A is said to be biflat if the adjoint A,* 1 A* — (ARA)*
of A4 has a bounded left inverse which is an A—bimodule map. Recall that
every biprojective Banach algebra is biflat. Indeed, if A is biprojective then
there exists an A—bimodule map Ay : A — A®A such that Ay oAy = 14.
So A" o A" = I4+. It follows that A\4* is a left inverse of A 4™ that is an
A—bimodule map. The basic properties of biprojectivity and biflatness are
investigated in [3] and also [1, 9].

Also biflatness and biprojectivity of Lau product of Banach algebras are in-
vestigated in [5].

Let A be a Banach algebra and A(A) be the set of all homomorphisms from
A onto C. The character space of A is denoted by A(A) [J{0}.

A new version of amenability which is related to characters was introduced
and investigated by E. Kaniuth and A. T.-M. Lau and J. Pym in [7]. Also M.
S. Monfared independently studied this concept in [8].

Let A be a Banach algebra and ¢ € A(A). Then A is said to be p— amenable
if there exists an m € A™* such that m(¢) = 1 and for all a € A and f € A,
m(f-a) = p(a)m(f). Such an m is called a p—mean.

A Banach algebra A is said to be ¢— contractible if there exists an u € A such
that ¢(u) =1 and au = ¢(a)u for all @ € A. The notion of p—contractibility
of Banach algebras was introduced by Z. Hu, M. S. Monfared and T. Traynor
in [2]. Recall that each ¢—contractible Banach algebra is p—amenable.

Let A and B be two normed algebras and let A(B) # () . Then we say that a
bounded linear map T : A — B is character module homomorphism if there
exists a ¢ € A(B) such that T*(g - b) = p(b)T*(g) for all g € B* and b € B.
The set of all non-zero character module homomorphisms from A into B is
denoted by CM H (A, B). In particular in the case where A = B, CM H(A, B)
is denoted by CM H(A). Some basic and hereditary properties of character
module homomorphisms are investigated in [6].

2. Main Results

In this section let A be a Banach algebra and B%O) be the closed unit ball

of A. Also let € € B%O) and A, be the Banach space A equipped with the new
multiplication “ ® 7.

The aim of this section is to study the relation between biflatness, biprojectiv-
ity, ¢—amenability and also p—contractibility of A and A.. Also we present
the relation between CMH(A) and CMH(A.).

In this section we use the following results repeatedly.

Proposition 2.1 ([4, Proposition 2.3|). Let A be a Banach algebra and e €

B%O). Then A, is unital if and only if A is unital and € is invertible.

The relation between A(A) and A(A.) are given by,
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Proposition 2.2 ([4, proposition 2.4]). Let A be a Banach algebra and ¢ €
(0) . Then,

( ) If ¢ is a multiplicative linear functional on A, then ¢ = p(e)p is a
multiplicative linear functional on A..

(2) If Ac is unital and v is a multiplicative linear functional on A., then
o(a) = (e ta) is a multiplicative linear functional on A.

We give the following proposition that we use it repeatedly.

Proposition 2.3. Let A be a Banach algebra and € € B . If A, is unatal
then (Ag)-—2 = A, ( isometrically isomorphism ).

Proof. Let “ -7, “® 7”7 and “ ® 7 be the products on A, A, and (A.).-2
respectively. Let I < (A, ||| ) —> ((A-)es, |||, ®) be the identity map. We
shall show that I is an algebraic homomorphism.
I(a)®I(c)=a®c

=aGe’Oc

:a.g.g_Z.g.c

=a-c

=I(a-c).
This shows that [ is an isometric isomorphism. Note that if ||¢|| < 1 then
le7t|| > 1. But for each a,c € (A.).-2 we have,

la@cll=lla@e 0|

72.5.c||

=lla-e-¢e

= lla-

< llallliell-
0

The following proposition reveal some equalities concerning A.—module
actions on A.*, A.®A. and (A.®A.)* that we apply them in the sequel.

Proposition 2.4. Let A be a Banach algebra and € € B . Then,

(1) fea=f-acanda® f=ca- f, forall f € A." and a € A..

(2) a®(c®d) =acc®@d and (c®d) ® a = c® dea for all a,c,d € A.. In
particular, a®u = ac-u and u®a = u-ca for alla € A. andu € A.QA,.

(B) h®a=h-ac anda®h=ca-h foralla € A. and h € (A.®A.)*.

Proof. (1) : Let a,c € A, and f € A.*. Then,

(f ©a,c) =(f,a©c)=(f aec)
= (f-ae,c).
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It follows that f ® a = f-ae. Similarly a ©® f =¢ca - f.
(2) : Let a,c,d € A.. Then
a®(c®d) =a0c®d
=aec®d.

Similarly (c®d) ®a = c®dea. Now let u=>"", ¢;®d; € A.®A. and a € A..
Then,

a@u:aQZCi@bdi: hﬂm a@Zci@)di
i=1 1=1

= nh_I)noo Z acc; ® d;

=1

n

=ae- lim g ¢ ®d;
n—00 £ T
1=

= agc - u.

Similarly ©u ® a = u - ca.
(3): Let a € A. and h € (A.®A.)*. Then for all ¢, d € A, we have,
(ho©a,cad)=(h,a® (c®d)) = (h,acc ®d)
= (h-ae,c®d).

Now let u =37 ¢; ®d; € A.®A.. Then,

(hoau)=(hoa) ¢od)
=1

= nh_r)noo<h, a® Z; ¢i ®d;)

n

= lim (h,ac- > ced)

=1

= lim (h- CL&T,ZCi ® d;)

n—>00 —
= (h - ae, u).
It follows that h ©® a = h - ae. Similarly a © h = €a - h. O
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In the following results we characterize the relation between
p—contractibility of A and A..

Theorem 2.1. Let A be a Banach algebra and ¢ € B{‘”. Then,

(1) If A is p—-contractible and p(e) # 0 then A. is ¥—contractible, where

¥ =p(e)e.
(2) If Ac is unital and 1— contractible then A is p— contractible, where p(a) =
Y(e7ta),a € A.

Proof. (1) : As A is p—contractible then there exists an v € A such that
e(u) =1 and au = p(a)u for all a € A. Let V = 55+ Then

a®V =aV = CL&?@
B 1 B 1
= @aau = gp—g)go(aa)u
= p(a)u = p(g)p(a) B
=Y(a)V.

Also
Y(V) = ¢(@) = @(@ﬂw) = ¢(u)
=1.

So A, is ®—contractible.

(2) : Let p(a) = ¢ (e7ta) and let A. be unital and ¢ —contractible. So ¥ (a) =
¢(ea). Also there exists an u € A, such that ¢(u) =1 and a ® u = 1(a)u for
all a € A.. It follows that

agu = P(a)u = p(ea)u = p(e)p(a)u
= p(ac)u, a€ A..
S0
acu = p(ag)u. (1)
Upon substituting @ = ce™! in (1) we can conclude that
cu=p(c)u, ceA. (2)
On the other hand the equality 1 = ¥ (u) = ¢(eu) = (e)p(u) implies that

p(u) # 0.
Choose V = —~. So ¢(V) =1 and for all ¢ € A,

e(u)’
cu u
cV = = ¢(c) = ¢V
p(u) p(u)
This shows that A is ¢p—contractible. 0

The following Theorem reveals the relation between p—amenability of A
and A..
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Theorem 2.2. Let A be a Banach algebra and ¢ € B . Then,
(1) If A is p—amenable and () # 0 then A. is 1p—amenable, where 1 =
().
(2) If Ac is unital and Y—amenable then A is p—amenable, where p(a) =
b(ea).
Proof. (1) : Let ¥ = p(e)p and ¢(e) # 0. Also let A be p—amenable. So
there exists an m € A** such that m(p) = 1 and m(f - a) = p(a)m(f) for all
a € Aand f e A" Hence Ji5 () =m(p) = 1.

Also . .
@(f ©®a) = @(f - ag)
= —elacm(f) = playmi(})
= @(8)@(@)%(1“)
= v(@) 5 ()
So 5 is a ¢y—mean and A. is ¢y—amenable.

(2) : Let ¢(a) = ¢(e 'a) and let A. be unital and )—amenable. So by part
(1) (A.).—2 is ¢p—amenable, where

#la) = (e *)(a) = p(ee™*)p(ca)
= o(e7)p(e)p(a)
=p(a), ac€A.
But it is obvious that (A.).-2 = A. Hence A is ¢—amenable. O
In the sequel we investigate the relations between biprojectivity and bi-

flatness of A and A..

Theorem 2.3. Let A be a Banach algebra and € € B{O). Then,

(1) If A is biprojective and A, is unital then so is A..
(2) If A, is biprojective and unital then so is A.

Proof. (1) : Let A, be unital and let A be biprojective. Then there exists an
A—bimodule map Ay : A — A®A such that Ay oAy = I4. Clearly A4 is an
A.—bimodule map. Indeed,

Aa(a @ c¢) = A (aec) = ae - M (c)
=a®Aa(c), a,ceA..
Similarly
Aa(a ® c) = A(aec) = Aa(a) - ec
=Aa(a) ®c, a,c€ A..
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Let k: A.®A, — A.®A. be the bounded linear map such that
kla®c)=as'®c, a,c€ A.. kisan A.—bimodule map. Indeed,
Ka® (c®d)) =kr(a®c®d) = k(acc®d)

=acce ' ®d

—aGce'®d

=a®(cc ' ®d)

=a®k(c®d), a,cdeA..
Similarly

K((c®d)®a)=kr(c®dO a)
—cc'®doa
=(cce'®@d)Oa
=k(c®d)®a, a,cdeA..

Set Aa. = ko Aa. As A4, is the composition of two A.—bimodule maps so it
is an A.—bimodule map. Let Aa(a) = >, fij(a) ® g;(a). So,

Ap.0da(a) =AD4 0kods(a) = Ay, ome] a) ® g;(a

=24 fila)e @yl ng Je ™' © g5(a)
:ij( € 59] ij a)g;(a
ZAA(Zf](a)@?g]( a)) = Aa(Aa(a))
:AAO)\A(CL)

=a, ac€A..

Hence A, is biprojective.
(2) : As A = (A.).—2 so the proof is an immediate consequence of part (1). [

Theorem 2.4. Let A be a Banach algebra and € € B{O). Then,
(1) If A is biflat and A, is unital then so is A..
(2) If A, is biflat and unital then so is A.

Proof. Let A be biflat and A, be unital. Then there exists an A—bimodule map
A1 (ARA)* — A* such that pgo A" = I4-. Clearly py is an A.—bimodule
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map. Indeed
palh © a) = pa(h - ae)
= pa(h) - ae
=pa(h) ®a, a€ A, he (ARA)".
Similarly

pala®h) = pa(ea-h)
=ca-pa(h)
=a®pa(h), a€ A, hec(ARA)*

Suppose that [ : A.®A, — A.®A. is the bounded linear map such that
lla®c)=ae®c, a,c€ A.. We shall show that [ is an A.—bimodule map.

(a®(c®d) =la®c®d) =I(acc®d)
=acce®@d=a0 (cg)®d
=a®(cc®d)
=a0llc®d), a,cdeA..

Similarly

((c®d)®a)=1l(c®dEa)=ccRdda
=(ce®d)®a
=llc®d) ©®a, a,cdeA..

One can easily check that
AYRE AN

It follows that I* o A 4™ = A4 ",
Let 0 : A.®A., — A.®A. be the bounded linear map such that o(a ® ¢) =
ac ' ®ec, a,cc A.. Obviously o is an A.—bimodule map. Define

pa. : (ALRA) — AF
by pa.(h) = paco*(h),h € (A.QA.)".

As pa. is the composition of two A.—bimodule maps, so it is an A.—bimodule
map. Also,

(pa. 0 Ba7)(g) = pa.(Da(9))
= pa. ("o A4"(9)) = pa.(I"(Da"(9)))
= pa(c™(I*(La™(9))))
= pa(l"(Ba™(g)) 0 0) = pa(La™(9)) = 1a+(9)
=g, g€ (A)"
Note that
U(Aa™(g)) oo = D4 (g).
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Indeed,

("
(I"(Aa™(9)) s @ d)
(Ba™(9), U™ @d))
(Aa™(g),cs7 e @)
(Aa™(g),c®d),c,d € A..

It follows that
I"(Aa™(g)) oo = AA"(g).

(2) : As A= (A.).—2 and A. is biflat and unital so the proof is an immediate
consequence of part (1). O

In the following results we characterize the relation between CMH(A)
and CMH (A.).

Proposition 2.5. Let A be a Banach algebra and ¢ € @. If A. is unital
then CMH(A) = CMH(A.).

Proof. Let T € CMH(A). Then there exists a ¢ € A(A) such that
T"(g-a) = p(a)T"(g),a € A,g € A". So,

T"(g®a) =T"(g - ag) = p(ag)T"(g)
= ¢p(e)p(a)T(9)
= @D(&)T*(g), a € Aayg € Aa*~

It follows that CM H(A) C CMH(A,).
We shall show that CMH(A.) C CMH(A). Let T € CMH(A.). So there
exists a 1 € A(A.) such that T*(g ® a) = ¥(a)T*(g),a € A, g € A", Set

pla) =1(e'a),a € A. (3)
So by substituting a = ece™! in (3) we can conclude that

Y(ee™) = plece™)
= ¢(c),c € A.

Hence

T"(g-a) =T (g ©ae™ ') = ¢(ac™ )T (g)
=p(a)T*(g),a € A,g € A™.

It follows that "€ CMH(A). So CMH(A.) = CMH(A). O
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