

**BIFLATNESS, BIPROJECTIVITY,  $\varphi$ -AMENABILITY AND  
 $\varphi$ -CONTRACTIBILITY OF A CERTAIN CLASS OF BANACH  
ALGEBRAS.**

A. R. KHODDAMI

*Given a Banach algebra  $A$  and  $\varepsilon \in \overline{B_1^{(0)}}$  (the closed unit ball of  $A$ ), the biflatness, biprojectivity,  $\varphi$ -amenability and  $\varphi$ -contractibility of a new Banach algebra  $A_\varepsilon$  are investigated.*

**Keywords:** Biflatness, Biprojectivity, Character module homomorphism,  $\varphi$ -amenability,  $\varphi$ -contractibility.

**MSC2010:** Primary 46M10; 46M18; Secondary 46H25; 46B28.

## 1. INTRODUCTION AND PRELIMINARIES

Let  $A$  be a Banach algebra. In [4] R. A. Kamyabi-Gol and M. Janfada defined a new product “ $\odot$ ” on  $A$  by  $\underline{a} \odot c = a\varepsilon c$  for all  $a, c \in A$ , where  $\varepsilon$  is a fixed element of the closed unit ball  $B_1^{(0)}$  of  $A$ .  $(A, \odot)$  is an associative Banach algebra which is denoted by  $A_\varepsilon$ . Some miscellaneous algebraic properties of  $A_\varepsilon$  such as when  $A_\varepsilon$  has a unit element, when an element of  $A_\varepsilon$  is invertible and the necessary and sufficient conditions for the existence of involution on  $A_\varepsilon$  are investigated in [4]. The Arens regularity and amenability of  $A_\varepsilon$  and also derivations on  $A_\varepsilon$  and when is  $A_\varepsilon$  a  $C^*$ -algebra are studied in [4].

For a Banach algebra  $A$  let  $\Delta_A : A \hat{\otimes} A \longrightarrow A$  be the multiplication map, where  $A \hat{\otimes} A$  is the projective tensor product.  $\Delta_A$  is an  $A$ -bimodule map that is a bounded linear map such that  $\Delta_A(a \cdot u) = a \cdot \Delta_A(u)$  and  $\Delta_A(u \cdot a) = \Delta_A(u) \cdot a$  for all  $a \in A$  and  $u \in A \hat{\otimes} A$ . It is well known that the  $A$ -module actions on  $A \hat{\otimes} A$  is defined by

$$a \cdot (c \otimes d) = ac \otimes d, \quad (c \otimes d) \cdot a = c \otimes da, \quad a, c, d \in A.$$

A Banach algebra  $A$  is said to be biprojective if  $\Delta_A : A \hat{\otimes} A \longrightarrow A$  has a bounded right inverse which is an  $A$ -bimodule map. It means that there exists a bounded linear map  $\lambda_A : A \longrightarrow A \hat{\otimes} A$  such that  $\Delta_A \circ \lambda_A = I_A$  and

$$\lambda_A(ac) = a \cdot \lambda_A(c) = \lambda_A(a) \cdot c,$$

---

Faculty of Mathematical Sciences, Shahrood University of Technology, P. O. Box 3619995161-316, Shahrood, Iran e-mail khoddami.alireza@shahroodut.ac.ir

for all  $a, c \in A$ .

A Banach algebra  $A$  is said to be biflat if the adjoint  $\Delta_A^* : A^* \longrightarrow (A \hat{\otimes} A)^*$  of  $\Delta_A$  has a bounded left inverse which is an  $A$ -bimodule map. Recall that every biprojective Banach algebra is biflat. Indeed, if  $A$  is biprojective then there exists an  $A$ -bimodule map  $\lambda_A : A \longrightarrow A \hat{\otimes} A$  such that  $\Delta_A \circ \lambda_A = I_A$ . So  $\lambda_A^* \circ \Delta_A^* = I_{A^*}$ . It follows that  $\lambda_A^*$  is a left inverse of  $\Delta_A^*$  that is an  $A$ -bimodule map. The basic properties of biprojectivity and biflatness are investigated in [3] and also [1, 9].

Also biflatness and biprojectivity of Lau product of Banach algebras are investigated in [5].

Let  $A$  be a Banach algebra and  $\Delta(A)$  be the set of all homomorphisms from  $A$  onto  $\mathbb{C}$ . The character space of  $A$  is denoted by  $\Delta(A) \cup \{0\}$ .

A new version of amenability which is related to characters was introduced and investigated by E. Kaniuth and A. T.-M. Lau and J. Pym in [7]. Also M. S. Monfared independently studied this concept in [8].

Let  $A$  be a Banach algebra and  $\varphi \in \Delta(A)$ . Then  $A$  is said to be  $\varphi$ -amenable if there exists an  $m \in A^{**}$  such that  $m(\varphi) = 1$  and for all  $a \in A$  and  $f \in A^*$ ,  $m(f \cdot a) = \varphi(a)m(f)$ . Such an  $m$  is called a  $\varphi$ -mean.

A Banach algebra  $A$  is said to be  $\varphi$ -contractible if there exists an  $u \in A$  such that  $\varphi(u) = 1$  and  $au = \varphi(a)u$  for all  $a \in A$ . The notion of  $\varphi$ -contractibility of Banach algebras was introduced by Z. Hu, M. S. Monfared and T. Traynor in [2]. Recall that each  $\varphi$ -contractible Banach algebra is  $\varphi$ -amenable.

Let  $A$  and  $B$  be two normed algebras and let  $\Delta(B) \neq \emptyset$ . Then we say that a bounded linear map  $T : A \longrightarrow B$  is character module homomorphism if there exists a  $\varphi \in \Delta(B)$  such that  $T^*(g \cdot b) = \varphi(b)T^*(g)$  for all  $g \in B^*$  and  $b \in B$ . The set of all non-zero character module homomorphisms from  $A$  into  $B$  is denoted by  $CMH(A, B)$ . In particular in the case where  $A = B$ ,  $CMH(A, B)$  is denoted by  $CMH(A)$ . Some basic and hereditary properties of character module homomorphisms are investigated in [6].

## 2. Main Results

In this section let  $A$  be a Banach algebra and  $\overline{B_1^{(0)}}$  be the closed unit ball of  $A$ . Also let  $\varepsilon \in \overline{B_1^{(0)}}$  and  $A_\varepsilon$  be the Banach space  $A$  equipped with the new multiplication “ $\odot$ ”.

The aim of this section is to study the relation between biflatness, biprojectivity,  $\varphi$ -amenability and also  $\varphi$ -contractibility of  $A$  and  $A_\varepsilon$ . Also we present the relation between  $CMH(A)$  and  $CMH(A_\varepsilon)$ .

In this section we use the following results repeatedly.

**Proposition 2.1** ([4, Proposition 2.3]). *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then  $A_\varepsilon$  is unital if and only if  $A$  is unital and  $\varepsilon$  is invertible.*

The relation between  $\Delta(A)$  and  $\Delta(A_\varepsilon)$  are given by,

**Proposition 2.2** ([4, proposition 2.4]). *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1) *If  $\varphi$  is a multiplicative linear functional on  $A$ , then  $\psi = \varphi(\varepsilon)\varphi$  is a multiplicative linear functional on  $A_\varepsilon$ .*
- (2) *If  $A_\varepsilon$  is unital and  $\psi$  is a multiplicative linear functional on  $A_\varepsilon$ , then  $\varphi(a) = \psi(\varepsilon^{-1}a)$  is a multiplicative linear functional on  $A$ .*

We give the following proposition that we use it repeatedly.

**Proposition 2.3.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . If  $A_\varepsilon$  is unital then  $(A_\varepsilon)_{\varepsilon^{-2}} = A$ , ( isometrically isomorphism ).*

*Proof.* Let “ $\cdot$ ”, “ $\odot$ ” and “ $\circledcirc$ ” be the products on  $A$ ,  $A_\varepsilon$  and  $(A_\varepsilon)_{\varepsilon^{-2}}$  respectively. Let  $I : (A, \|\cdot\|, \cdot) \rightarrow ((A_\varepsilon)_{\varepsilon^{-2}}, \|\cdot\|, \odot)$  be the identity map. We shall show that  $I$  is an algebraic homomorphism.

$$\begin{aligned} I(a) \odot I(c) &= a \odot c \\ &= a \odot \varepsilon^{-2} \odot c \\ &= a \cdot \varepsilon \cdot \varepsilon^{-2} \cdot \varepsilon \cdot c \\ &= a \cdot c \\ &= I(a \cdot c). \end{aligned}$$

This shows that  $I$  is an isometric isomorphism. Note that if  $\|\varepsilon\| \leq 1$  then  $\|\varepsilon^{-1}\| \geq 1$ . But for each  $a, c \in (A_\varepsilon)_{\varepsilon^{-2}}$  we have,

$$\begin{aligned} \|a \odot c\| &= \|a \odot \varepsilon^{-2} \odot c\| \\ &= \|a \cdot \varepsilon \cdot \varepsilon^{-2} \cdot \varepsilon \cdot c\| \\ &= \|a \cdot c\| \\ &\leq \|a\| \|c\|. \end{aligned}$$

□

The following proposition reveal some equalities concerning  $A_\varepsilon$ -module actions on  $A_\varepsilon^*$ ,  $A_\varepsilon \hat{\otimes} A_\varepsilon$  and  $(A_\varepsilon \hat{\otimes} A_\varepsilon)^*$  that we apply them in the sequel.

**Proposition 2.4.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1)  $f \odot a = f \cdot a\varepsilon$  and  $a \odot f = \varepsilon a \cdot f$ , for all  $f \in A_\varepsilon^*$  and  $a \in A_\varepsilon$ .
- (2)  $a \odot (c \otimes d) = a\varepsilon c \otimes d$  and  $(c \otimes d) \odot a = c \otimes d\varepsilon a$  for all  $a, c, d \in A_\varepsilon$ . In particular,  $a \odot u = a\varepsilon \cdot u$  and  $u \odot a = u \cdot \varepsilon a$  for all  $a \in A_\varepsilon$  and  $u \in A_\varepsilon \hat{\otimes} A_\varepsilon$ .
- (3)  $h \odot a = h \cdot a\varepsilon$  and  $a \odot h = \varepsilon a \cdot h$  for all  $a \in A_\varepsilon$  and  $h \in (A_\varepsilon \hat{\otimes} A_\varepsilon)^*$ .

*Proof.* (1) : Let  $a, c \in A_\varepsilon$  and  $f \in A_\varepsilon^*$ . Then,

$$\begin{aligned} \langle f \odot a, c \rangle &= \langle f, a \odot c \rangle = \langle f, a\varepsilon c \rangle \\ &= \langle f \cdot a\varepsilon, c \rangle. \end{aligned}$$

It follows that  $f \odot a = f \cdot a\varepsilon$ . Similarly  $a \odot f = \varepsilon a \cdot f$ .

(2) : Let  $a, c, d \in A_\varepsilon$ . Then

$$\begin{aligned} a \odot (c \otimes d) &= a \odot c \otimes d \\ &= a\varepsilon c \otimes d. \end{aligned}$$

Similarly  $(c \otimes d) \odot a = c \otimes d\varepsilon a$ . Now let  $u = \sum_{i=1}^{\infty} c_i \otimes d_i \in A_\varepsilon \hat{\otimes} A_\varepsilon$  and  $a \in A_\varepsilon$ . Then,

$$\begin{aligned} a \odot u &= a \odot \sum_{i=1}^{\infty} c_i \otimes d_i = \lim_{n \rightarrow \infty} a \odot \sum_{i=1}^n c_i \otimes d_i \\ &= \lim_{n \rightarrow \infty} \sum_{i=1}^n a \odot c_i \otimes d_i \\ &= \lim_{n \rightarrow \infty} \sum_{i=1}^n a\varepsilon c_i \otimes d_i \\ &= a\varepsilon \cdot \lim_{n \rightarrow \infty} \sum_{i=1}^n c_i \otimes d_i \\ &= a\varepsilon \cdot u. \end{aligned}$$

Similarly  $u \odot a = u \cdot \varepsilon a$ .

(3) : Let  $a \in A_\varepsilon$  and  $h \in (A_\varepsilon \hat{\otimes} A_\varepsilon)^*$ . Then for all  $c, d \in A_\varepsilon$  we have,

$$\begin{aligned} \langle h \odot a, c \otimes d \rangle &= \langle h, a \odot (c \otimes d) \rangle = \langle h, a\varepsilon c \otimes d \rangle \\ &= \langle h \cdot a\varepsilon, c \otimes d \rangle. \end{aligned}$$

Now let  $u = \sum_{i=1}^{\infty} c_i \otimes d_i \in A_\varepsilon \hat{\otimes} A_\varepsilon$ . Then,

$$\begin{aligned} \langle h \odot a, u \rangle &= \langle h \odot a, \sum_{i=1}^{\infty} c_i \otimes d_i \rangle \\ &= \lim_{n \rightarrow \infty} \langle h \odot a, \sum_{i=1}^n c_i \otimes d_i \rangle \\ &= \lim_{n \rightarrow \infty} \langle h, a \odot \sum_{i=1}^n c_i \otimes d_i \rangle \\ &= \lim_{n \rightarrow \infty} \langle h, a\varepsilon \cdot \sum_{i=1}^n c_i \otimes d_i \rangle \\ &= \lim_{n \rightarrow \infty} \langle h \cdot a\varepsilon, \sum_{i=1}^n c_i \otimes d_i \rangle \\ &= \langle h \cdot a\varepsilon, u \rangle. \end{aligned}$$

It follows that  $h \odot a = h \cdot a\varepsilon$ . Similarly  $a \odot h = \varepsilon a \cdot h$ .  $\square$

In the following results we characterize the relation between  $\varphi$ -contractibility of  $A$  and  $A_\varepsilon$ .

**Theorem 2.1.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1) *If  $A$  is  $\varphi$ -contractible and  $\varphi(\varepsilon) \neq 0$  then  $A_\varepsilon$  is  $\psi$ -contractible, where  $\psi = \varphi(\varepsilon)\varphi$ .*
- (2) *If  $A_\varepsilon$  is unital and  $\psi$ -contractible then  $A$  is  $\varphi$ -contractible, where  $\varphi(a) = \psi(\varepsilon^{-1}a)$ ,  $a \in A$ .*

*Proof.* (1) : As  $A$  is  $\varphi$ -contractible then there exists an  $u \in A$  such that  $\varphi(u) = 1$  and  $au = \varphi(a)u$  for all  $a \in A$ . Let  $V = \frac{u}{\varphi(u)}$ . Then

$$\begin{aligned} a \odot V &= a\varepsilon V = a\varepsilon \frac{u}{\varphi(u)} \\ &= \frac{1}{\varphi(u)} a\varepsilon u = \frac{1}{\varphi(u)} \varphi(a\varepsilon)u \\ &= \varphi(a)u = \varphi(\varepsilon)\varphi(a) \frac{u}{\varphi(u)} \\ &= \psi(a)V. \end{aligned}$$

Also

$$\begin{aligned} \psi(V) &= \psi\left(\frac{u}{\varphi(u)}\right) = \varphi(\varepsilon)\varphi\left(\frac{u}{\varphi(u)}\right) = \varphi(u) \\ &= 1. \end{aligned}$$

So  $A_\varepsilon$  is  $\psi$ -contractible.

(2) : Let  $\varphi(a) = \psi(\varepsilon^{-1}a)$  and let  $A_\varepsilon$  be unital and  $\psi$ -contractible. So  $\psi(a) = \varphi(\varepsilon a)$ . Also there exists an  $u \in A_\varepsilon$  such that  $\psi(u) = 1$  and  $a \odot u = \psi(a)u$  for all  $a \in A_\varepsilon$ . It follows that

$$\begin{aligned} a\varepsilon u &= \psi(a)u = \varphi(\varepsilon a)u = \varphi(\varepsilon)\varphi(a)u \\ &= \varphi(a\varepsilon)u, \quad a \in A_\varepsilon. \end{aligned}$$

So

$$a\varepsilon u = \varphi(a\varepsilon)u. \quad (1)$$

Upon substituting  $a = c\varepsilon^{-1}$  in (1) we can conclude that

$$cu = \varphi(c)u, \quad c \in A. \quad (2)$$

On the other hand the equality  $1 = \psi(u) = \varphi(\varepsilon u) = \varphi(\varepsilon)\varphi(u)$  implies that  $\varphi(u) \neq 0$ .

Choose  $V = \frac{u}{\varphi(u)}$ . So  $\varphi(V) = 1$  and for all  $c \in A$ ,

$$cV = \frac{cu}{\varphi(u)} = \varphi(c) \frac{u}{\varphi(u)} = \varphi(c)V.$$

This shows that  $A$  is  $\varphi$ -contractible.  $\square$

The following Theorem reveals the relation between  $\varphi$ -amenability of  $A$  and  $A_\varepsilon$ .

**Theorem 2.2.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1) *If  $A$  is  $\varphi$ -amenable and  $\varphi(\varepsilon) \neq 0$  then  $A_\varepsilon$  is  $\psi$ -amenable, where  $\psi = \varphi(\varepsilon)\varphi$ .*
- (2) *If  $A_\varepsilon$  is unital and  $\psi$ -amenable then  $A$  is  $\varphi$ -amenable, where  $\varphi(a) = \psi(\varepsilon^{-1}a)$ .*

*Proof.* (1) : Let  $\psi = \varphi(\varepsilon)\varphi$  and  $\varphi(\varepsilon) \neq 0$ . Also let  $A$  be  $\varphi$ -amenable. So there exists an  $m \in A^{**}$  such that  $m(\varphi) = 1$  and  $m(f \cdot a) = \varphi(a)m(f)$  for all  $a \in A$  and  $f \in A^*$ . Hence  $\frac{m}{\varphi(\varepsilon)}(\psi) = m(\varphi) = 1$ .

Also

$$\begin{aligned} \frac{m}{\varphi(\varepsilon)}(f \odot a) &= \frac{m}{\varphi(\varepsilon)}(f \cdot a\varepsilon) \\ &= \frac{1}{\varphi(\varepsilon)}\varphi(a\varepsilon)m(f) = \varphi(a)m(f) \\ &= \varphi(\varepsilon)\varphi(a)\frac{m}{\varphi(\varepsilon)}(f) \\ &= \psi(a)\frac{m}{\varphi(\varepsilon)}(f). \end{aligned}$$

So  $\frac{m}{\varphi(\varepsilon)}$  is a  $\psi$ -mean and  $A_\varepsilon$  is  $\psi$ -amenable.

(2) : Let  $\varphi(a) = \psi(\varepsilon^{-1}a)$  and let  $A_\varepsilon$  be unital and  $\psi$ -amenable. So by part (1)  $(A_\varepsilon)_{\varepsilon^{-2}}$  is  $\phi$ -amenable, where

$$\begin{aligned} \phi(a) &= \psi(\varepsilon^{-2})\psi(a) = \varphi(\varepsilon\varepsilon^{-2})\varphi(\varepsilon a) \\ &= \varphi(\varepsilon^{-1})\varphi(\varepsilon)\varphi(a) \\ &= \varphi(a), \quad a \in A. \end{aligned}$$

But it is obvious that  $(A_\varepsilon)_{\varepsilon^{-2}} = A$ . Hence  $A$  is  $\varphi$ -amenable.  $\square$

In the sequel we investigate the relations between biprojectivity and biflatness of  $A$  and  $A_\varepsilon$ .

**Theorem 2.3.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1) *If  $A$  is biprojective and  $A_\varepsilon$  is unital then so is  $A_\varepsilon$ .*
- (2) *If  $A_\varepsilon$  is biprojective and unital then so is  $A$ .*

*Proof.* (1) : Let  $A_\varepsilon$  be unital and let  $A$  be biprojective. Then there exists an  $A$ -bimodule map  $\lambda_A : A \longrightarrow A \hat{\otimes} A$  such that  $\Delta_A \circ \lambda_A = I_A$ . Clearly  $\lambda_A$  is an  $A_\varepsilon$ -bimodule map. Indeed,

$$\begin{aligned} \lambda_A(a \odot c) &= \lambda_A(a\varepsilon c) = a\varepsilon \cdot \lambda_A(c) \\ &= a \odot \lambda_A(c), \quad a, c \in A_\varepsilon. \end{aligned}$$

Similarly

$$\begin{aligned} \lambda_A(a \odot c) &= \lambda_A(a\varepsilon c) = \lambda_A(a) \cdot \varepsilon c \\ &= \lambda_A(a) \odot c, \quad a, c \in A_\varepsilon. \end{aligned}$$

Let  $\kappa : A_\varepsilon \hat{\otimes} A_\varepsilon \longrightarrow A_\varepsilon \hat{\otimes} A_\varepsilon$  be the bounded linear map such that  $\kappa(a \otimes c) = a\varepsilon^{-1} \otimes c$ ,  $a, c \in A_\varepsilon$ .  $\kappa$  is an  $A_\varepsilon$ -bimodule map. Indeed,

$$\begin{aligned}\kappa(a \odot (c \otimes d)) &= \kappa(a \odot c \otimes d) = \kappa(a\varepsilon c \otimes d) \\ &= a\varepsilon c \varepsilon^{-1} \otimes d \\ &= a \odot c \varepsilon^{-1} \otimes d \\ &= a \odot (c \varepsilon^{-1} \otimes d) \\ &= a \odot \kappa(c \otimes d), \quad a, c, d \in A_\varepsilon.\end{aligned}$$

Similarly

$$\begin{aligned}\kappa((c \otimes d) \odot a) &= \kappa(c \otimes d \odot a) \\ &= c \varepsilon^{-1} \otimes d \odot a \\ &= (c \varepsilon^{-1} \otimes d) \odot a \\ &= \kappa(c \otimes d) \odot a, \quad a, c, d \in A_\varepsilon.\end{aligned}$$

Set  $\lambda_{A_\varepsilon} = \kappa \circ \lambda_A$ . As  $\lambda_{A_\varepsilon}$  is the composition of two  $A_\varepsilon$ -bimodule maps so it is an  $A_\varepsilon$ -bimodule map. Let  $\lambda_A(a) = \sum_{j=1}^{\infty} f_j(a) \otimes g_j(a)$ . So,

$$\begin{aligned}\triangle_{A_\varepsilon} \circ \lambda_{A_\varepsilon}(a) &= \triangle_{A_\varepsilon} \circ \kappa \circ \lambda_A(a) = \triangle_{A_\varepsilon} \circ \kappa\left(\sum_{j=1}^{\infty} f_j(a) \otimes g_j(a)\right) \\ &= \triangle_{A_\varepsilon}\left(\sum_{j=1}^{\infty} f_j(a) \varepsilon^{-1} \otimes g_j(a)\right) = \sum_{j=1}^{\infty} f_j(a) \varepsilon^{-1} \odot g_j(a) \\ &= \sum_{j=1}^{\infty} f_j(a) \varepsilon^{-1} \varepsilon g_j(a) = \sum_{j=1}^{\infty} f_j(a) g_j(a) \\ &= \triangle_A\left(\sum_{j=1}^{\infty} f_j(a) \otimes g_j(a)\right) = \triangle_A(\lambda_A(a)) \\ &= \triangle_A \circ \lambda_A(a) \\ &= a, \quad a \in A_\varepsilon.\end{aligned}$$

Hence  $A_\varepsilon$  is biprojective.

(2) : As  $A = (A_\varepsilon)_{\varepsilon^{-2}}$  so the proof is an immediate consequence of part (1).  $\square$

**Theorem 2.4.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . Then,*

- (1) *If  $A$  is biflat and  $A_\varepsilon$  is unital then so is  $A_\varepsilon$ .*
- (2) *If  $A_\varepsilon$  is biflat and unital then so is  $A$ .*

*Proof.* Let  $A$  be biflat and  $A_\varepsilon$  be unital. Then there exists an  $A$ -bimodule map  $\rho_A : (A \hat{\otimes} A)^* \longrightarrow A^*$  such that  $\rho_A \circ \triangle_A^* = I_{A^*}$ . Clearly  $\rho_A$  is an  $A_\varepsilon$ -bimodule

map. Indeed

$$\begin{aligned}\rho_A(h \odot a) &= \rho_A(h \cdot a\varepsilon) \\ &= \rho_A(h) \cdot a\varepsilon \\ &= \rho_A(h) \odot a, \quad a \in A_\varepsilon, h \in (A \hat{\otimes} A)^*.\end{aligned}$$

Similarly

$$\begin{aligned}\rho_A(a \odot h) &= \rho_A(\varepsilon a \cdot h) \\ &= \varepsilon a \cdot \rho_A(h) \\ &= a \odot \rho_A(h), \quad a \in A_\varepsilon, h \in (A \hat{\otimes} A)^*.\end{aligned}$$

Suppose that  $l : A_\varepsilon \hat{\otimes} A_\varepsilon \longrightarrow A_\varepsilon \hat{\otimes} A_\varepsilon$  is the bounded linear map such that  $l(a \otimes c) = a\varepsilon \otimes c$ ,  $a, c \in A_\varepsilon$ . We shall show that  $l$  is an  $A_\varepsilon$ -bimodule map.

$$\begin{aligned}l(a \odot (c \otimes d)) &= l(a \odot c \otimes d) = l(a\varepsilon c \otimes d) \\ &= a\varepsilon c\varepsilon \otimes d = a \odot (c\varepsilon) \otimes d \\ &= a \odot (c\varepsilon \otimes d) \\ &= a \odot l(c \otimes d), \quad a, c, d \in A_\varepsilon.\end{aligned}$$

Similarly

$$\begin{aligned}l((c \otimes d) \odot a) &= l(c \otimes d \odot a) = c\varepsilon \otimes d \odot a \\ &= (c\varepsilon \otimes d) \odot a \\ &= l(c \otimes d) \odot a, \quad a, c, d \in A_\varepsilon.\end{aligned}$$

One can easily check that

$$\Delta_{A_\varepsilon} = \Delta_A \circ l.$$

It follows that  $l^* \circ \Delta_A^* = \Delta_{A_\varepsilon}^*$ .

Let  $\sigma : A_\varepsilon \hat{\otimes} A_\varepsilon \longrightarrow A_\varepsilon \hat{\otimes} A_\varepsilon$  be the bounded linear map such that  $\sigma(a \otimes c) = a\varepsilon^{-1} \otimes c$ ,  $a, c \in A_\varepsilon$ . Obviously  $\sigma$  is an  $A_\varepsilon$ -bimodule map. Define

$$\rho_{A_\varepsilon} : (A_\varepsilon \hat{\otimes} A_\varepsilon)^* \longrightarrow A_\varepsilon^*$$

by  $\rho_{A_\varepsilon}(h) = \rho_A \circ \sigma^*(h)$ ,  $h \in (A_\varepsilon \hat{\otimes} A_\varepsilon)^*$ .

As  $\rho_{A_\varepsilon}$  is the composition of two  $A_\varepsilon$ -bimodule maps, so it is an  $A_\varepsilon$ -bimodule map. Also,

$$\begin{aligned}(\rho_{A_\varepsilon} \circ \Delta_{A_\varepsilon}^*)(g) &= \rho_{A_\varepsilon}(\Delta_{A_\varepsilon}^*(g)) \\ &= \rho_{A_\varepsilon}(l^* \circ \Delta_A^*(g)) = \rho_{A_\varepsilon}(l^*(\Delta_A^*(g))) \\ &= \rho_A(\sigma^*(l^*(\Delta_A^*(g)))) \\ &= \rho_A(l^*(\Delta_A^*(g)) \circ \sigma) = \rho_A(\Delta_A^*(g)) = I_{A^*}(g) \\ &= g, \quad g \in (A_\varepsilon)^*.\end{aligned}$$

Note that

$$l^*(\Delta_A^*(g)) \circ \sigma = \Delta_{A_\varepsilon}^*(g).$$

Indeed,

$$\begin{aligned}
 \langle l^*(\Delta_A^*(g)) \circ \sigma, c \otimes d \rangle &= \langle l^*(\Delta_A^*(g)), \sigma(c \otimes d) \rangle \\
 &= \langle l^*(\Delta_A^*(g)), c\varepsilon^{-1} \otimes d \rangle \\
 &= \langle \Delta_A^*(g), l(c\varepsilon^{-1} \otimes d) \rangle \\
 &= \langle \Delta_A^*(g), c\varepsilon^{-1} \varepsilon \otimes d \rangle \\
 &= \langle \Delta_A^*(g), c \otimes d \rangle, c, d \in A_\varepsilon.
 \end{aligned}$$

It follows that

$$l^*(\Delta_A^*(g)) \circ \sigma = \Delta_A^*(g).$$

(2) : As  $A = (A_\varepsilon)_{\varepsilon=2}$  and  $A_\varepsilon$  is biflat and unital so the proof is an immediate consequence of part (1).  $\square$

In the following results we characterize the relation between  $CMH(A)$  and  $CMH(A_\varepsilon)$ .

**Proposition 2.5.** *Let  $A$  be a Banach algebra and  $\varepsilon \in \overline{B_1^{(0)}}$ . If  $A_\varepsilon$  is unital then  $CMH(A) = CMH(A_\varepsilon)$ .*

*Proof.* Let  $T \in CMH(A)$ . Then there exists a  $\varphi \in \Delta(A)$  such that  $T^*(g \cdot a) = \varphi(a)T^*(g)$ ,  $a \in A$ ,  $g \in A^*$ . So,

$$\begin{aligned}
 T^*(g \odot a) &= T^*(g \cdot a\varepsilon) = \varphi(a\varepsilon)T^*(g) \\
 &= \varphi(\varepsilon)\varphi(a)T^*(g) \\
 &= \psi(a)T^*(g), \quad a \in A_\varepsilon, g \in A_\varepsilon^*.
 \end{aligned}$$

It follows that  $CMH(A) \subseteq CMH(A_\varepsilon)$ .

We shall show that  $CMH(A_\varepsilon) \subseteq CMH(A)$ . Let  $T \in CMH(A_\varepsilon)$ . So there exists a  $\psi \in \Delta(A_\varepsilon)$  such that  $T^*(g \odot a) = \psi(a)T^*(g)$ ,  $a \in A_\varepsilon$ ,  $g \in A_\varepsilon^*$ . Set

$$\varphi(a) = \psi(\varepsilon^{-1}a), a \in A. \quad (3)$$

So by substituting  $a = \varepsilon c \varepsilon^{-1}$  in (3) we can conclude that

$$\begin{aligned}
 \psi(c\varepsilon^{-1}) &= \varphi(\varepsilon c \varepsilon^{-1}) \\
 &= \varphi(c), c \in A.
 \end{aligned}$$

Hence

$$\begin{aligned}
 T^*(g \cdot a) &= T^*(g \odot a\varepsilon^{-1}) = \psi(a\varepsilon^{-1})T^*(g) \\
 &= \varphi(a)T^*(g), a \in A, g \in A^*.
 \end{aligned}$$

It follows that  $T \in CMH(A)$ . So  $CMH(A_\varepsilon) = CMH(A)$ .  $\square$

## REF E R E N C E S

- [1] *H. G. Dales*, Banach Algebras and Automatic Continuity, London Math. Soc. Monogr. Ser., 24, The Clarendon Press, Oxford University Press, New York, 2000.
- [2] *Z. Hu., M. S. Monfared, T. Traynor*, On character amenable Banach algebras, *Studia Math.*, (193) (2009), 53–78.
- [3] *A. Ya. Helemskii*, The Homology of Banach and Topological Algebras, Kluwer Academic Publishers Group, Dordrecht, 1986.
- [4] *R. A. Kamyabi-Gol and M. Janfada*, Banach algebras related to the elements of the unit ball of a Banach algebra, *Taiwan. J. Math.*, (12) No. 7 (2008), 1769–1779.
- [5] *A. R. Khoddami and H. R. Ebrahimi Vishki*, Biflatness and biprojectivity of Lau product of Banach algebras, *Bull. Iran. Math. Soc.*, (39) No. 3 (2013), 559–568.
- [6] *A. R. Khoddami*, A certain class of character module homomorphisms on normed algebras, submitted.
- [7] *E. Kaniuth, A. T.-M. Lau, J. Pym*, On character amenability of Banach algebras, *J. Math. Anal. Appl.*, (344) (2008), 942–955.
- [8] *M. S. Monfared*, Character amenability of Banach algebras, *Math. Proc. Camb. Phil. Soc.*, (144) (2008), 697–706.
- [9] *V. Runde*, Lectures on Amenability, Lecture Notes in Mathematics, 1774, Springer-Verlag, Berlin, 2002.