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φ−BIFLATNESS AND φ−BIPROJECTIVITY FOR θ-LAU PRODUCT

WITH APPLICATIONS

Eghbal Ghaderi1, Amir Sahami2

 For two Banach algebras A and B and a non-zero multiplicative linear func-
tional θ on B, Monfared introduced the θ−Lau product structure A ×θ B. In this paper,
we investigate and study the notions of φ−biprojectivity, φ−biflatness and φ−Johnson
amenability of A ×θ B and their relation with A and B. As an application, we char-

acterize φ-biflatness, φ-biprojectivity and φ-Johnson amenability for θ−Lau product of
Banach algebras related to locally compact groups and discrete semigroups.
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1. Introduction and preliminaries

Johnson studied amenable Banach algebras using virtual diagonals [7]. That is an
element M ∈ (A⊗̂A)∗∗ such that a ·M = M · a and π∗∗(M)a = a for each a ∈ A, where π
is the product morphism given by π(a⊗ b) = ab for each a, b ∈ A, see [14].

Helemskii studied the structure of Banach algebras through the notions of biflatness
and biprojectivity. In fact a Banach algebra is biflat (biprojective) if there exists a bounded
A-bimodule morphism ρ : A→ (A⊗̂A)∗∗(ρ : A→ A⊗̂A) such that π∗∗ ◦ ρ(a) = a(π ◦ ρ(a) =
a), for all a ∈ A, respectively. It is well-known that a Banach algebra A is amenable if and
only if A is biflat and A has a bounded approximate identity, see [14].

Recently some notions of amenability related to a multiplicative linear functional have
introduced and studied for Banach algebras. The notions like left φ-amenability, left φ-
contractibility, φ-biflatness and φ-biprojectivity studied for the group algebras, the measure
algebras and the Fourier algebras, for more information about these notions see [1], [8], [12]
and [17].

For an arbitrary Banach algebra A, the character space is denoted by σ(A) consists
of all non-zero multiplicative linear functionals on A and any element of σ(A) is called a
character. The θ−Lau product was first introduced by Lau [9] for F-algebras. Monfared [11]
introduced and investigated θ-Lau product space A ×θ B, for Banach algebras in general.
Indeed for two Banach algebras A and B such that σ(B) 6= ∅ and θ be a non-zero character
on B, the Cartesian product A×B by following multiplication and norm

(a, b)(a′, b′) = (aa′ + θ(b′)a+ θ(b)a′, bb′),

‖(a, b)‖ = ‖a‖A + ‖b‖B ,
is a Banach algebra, for all a, a′ ∈ A and b, b′ ∈ B. The Cartesian product A× B with the
above properties called the θ−Lau product of A and B which is denoted by A×θ B. From

Department of Mathematics. University of Kurdistan. Pasdaran street. P. O. Box 416. Sanandaj, Iran.

E-mail: eg.ghaderi@uok.ac.ir
Department of Mathematics, Faculty of Basic Sciences Ilam University P.O. Box 69315-516 Ilam, Iran.

E-mail: a.sahami@ilam.ac.ir

1-Corresponding author
97



98 E. Ghaderi, A. Sahami

[11] we identify A × {0} with A, and {0} × B with B. Thus, it is clear that A is a closed
two-sided ideal while B is a closed subalgebra of A ×θ B, and (A ×θ B)/A is isometrically
isomorphic to B. If θ = 0, then we obtain the usual direct product of A and B. Since direct
products often exhibit different properties, we have excluded the possibility that θ = 0.
Moreover, if B = C, the complex numbers, and θ is the identity map on C, then A×θ B is
the unitization A] of A. Note that, by [11, Proposition 2.4], the character space σ(A×θ B)
of A×θ B is equal to

{(φ, θ) : φ ∈ σ(A)}
⋃
{(0, ψ) : ψ ∈ σ(B)}.

Also, the dual space (A ×θ B)∗ of A ×θ B is identified with A∗ × B∗ such that for each
(a, b) ∈ A×θ B, φ ∈ σ(A) and ψ ∈ σ(B) we have

〈(φ, ψ), (a, b)〉 = φ(a) + ψ(b).

Now, suppose that A∗∗, B∗∗ and (A ×θ B)∗∗ are equipped with their first Arens products.
Then (A ×θ B)∗∗ is isometrically isomorphic with A∗∗ ×θ B∗∗. Also, for all (m,n), (p, q) ∈
(A×θ B)∗∗ the first Arens product is defined by

(m,n)�(p, q) = (m�p+ n(θ)p+ q(θ)m,n�q);

see [11, Proposition 2.12]. Note that every φ ∈ σ(A) has a unique extension to a character

on A∗∗ is given by φ̃ where φ̃(m) = m(φ), for all m ∈ A∗∗.
Note that A and B are closed two-sided ideal and closed subalgebra of L := A×θ B,

respectively. So, we can write a = (a, 0) and b = (0, b) for all a ∈ A and b ∈ B. Therefore,
L = A ×θ B is a Banach A−bimodule and also is a Banach B−bimodule. It has worth to
mention that some generalizations of twisted product related to a homomorphism are given
recently but by [3] it seems those products are trivial.

The contents of the paper is as follows, in section 2 we study φ−biflatness and
φ−biprojectivity of θ-Lau product of Banach algebras. Then we turn our attention to the
φ-Johnson amenability of θ-Lau product of Banach algebras in section 3. As a conclusion,
we characterize φ−biflatness, φ−biprojectivity and φ-Johnson amenability of θ-Lau product
of Banach algebras related to discrete semigroups or locally compact groups.

2. φ−biflatness and φ−biprojectivity

The usual projections p
A

: L −→ A and p
B

: L −→ B defined by p
A

(a, b) = a
and p

B
(a, b) = b. Also, let q

A
: A −→ L and q

B
: B −→ L be the usual injections via

q
A

(a) = (a, 0) and q
B

(b) = (0, b). Hence, the mappings q
A

and p
B

induce the mappings

q
A
⊗q

A
: A⊗̂A −→ L⊗̂L

and

p
B
⊗p

B
: L⊗̂L −→ B⊗̂B

with

(q
A
⊗q

A
)(a⊗ c) = (a, 0)⊗ (c, 0)

and

(p
B
⊗p

B
)((a, b)⊗ (c, d)) = b⊗ d,

respectively. Clearly, q
A

and q
A
⊗q

A
are A-bimodule maps and p

B
, q

B
and p

B
⊗ p

B
are

B-bimodule maps.
Now, suppose that A is unital with unit e. Then define mappings r

A
: L −→ A and

S
B

: B −→ L via r
A

(a, b) = a + θ(b)e and S
B

(b) = (−θ(b)e, b), respectively. Also, these
maps induce the unique mappings

r
A
⊗r

A
: L⊗̂L −→ A⊗̂A
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and

S
B
⊗S

B
: B⊗̂B −→ L⊗̂L

satisfying

(r
A
⊗r

A
)((a, b)⊗ (c, d)) = (a+ θ(b)e)⊗ (c+ θ(d)e)

and

(S
B
⊗S

B
)(b⊗ d) = (−θ(b)e, b)⊗ (−θ(d)e, d),

respectively. It is clear that r
A

and r
A
⊗r

A
are A−bimodule maps and S

B
is a B−bimodule

map. (For more details on the above mappings refer to [4]).
The notion of φ−biprojectivity for Banach algebras first introduced by Sahami and

Pourabbas [17]. For a nonzero multiplicative linear functional φ on A, the Banach algebras
A is called φ−biprojective if there exists a bounded A−bimodule morphism λA : A −→ A⊗̂A
such that φ ◦ πA ◦ λA = φ.

Proposition 2.1. Suppose that A and B are two Banach algebras which A has unit e,
φ ∈ σ(A) and θ ∈ σ(B). If L is (φ, θ)−biprojective. Then A is φ−biprojective.

Proof. Let L be (φ, θ)−biprojective. Then there exists the L−bimodule morphism λ
L

:
L −→ L⊗̂L such that (φ, θ) ◦ πL ◦ λL = (φ, θ). It is clear that

r
A
◦ π

L
= πA ◦ (r

A
⊗r

A
), φ ◦ r

A
= (φ, θ).

Define λA : A −→ A⊗̂A by λA = (r
A
⊗r

A
) ◦ λL ◦ qA . Clearly, λA is a bounded A−bimodule

morphism. Also, we have

(φ ◦ πA ◦ λA)(a) = (φ ◦ πA ◦ (r
A
⊗r

A
) ◦ λL ◦ qA)(a)

= (φ ◦ r
A
◦ πL ◦ λL)(a, 0)

= ((φ, θ) ◦ πL ◦ λL)(a, 0)

= (φ, θ)(a, 0)

= φ(a),

for all a ∈ A. So φ ◦ πA ◦ λA = φ. Thus A is φ-biprojective. �

Proposition 2.2. Suppose that A and B are two Banach algebras which A has unit e and
ψ ∈ σ(B). Then L is (0, ψ)−biprojective if and only if B is ψ−biprojective.

Proof. Suppose that there exists the L−bimodule morphism λL : L −→ L⊗̂L such that
(0, ψ) ◦πL ◦λL = (0, ψ). Now define the map λB : B −→ B⊗̂B by λB = (p

B
⊗ p

B
) ◦λL ◦ qB .

It is easy to see that

πB ◦ (p
B
⊗ p

B
) = p

B
◦ πL, ψ ◦ pB

= (0, ψ).

Thus we have λB is B−bimodule map and ψ ◦ πB ◦ λB = ψ. To see this consider(
ψ ◦ πB ◦ λB

)
(b) =

(
ψ ◦ πB ◦ (p

B
⊗ p

B
)λL ◦ qB

)
(b)

=
(
ψ ◦ p

B
◦ πL ◦ λL

)
(0, b)

=
(

(0, ψ) ◦ πL ◦ λL
)

(0, b)

= ψ(b),
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for all b ∈ B. Moreover,

λB(by) = (p
B
⊗ p

B
) ◦ λL ◦ qB (by)

= (p
B
⊗ p

B
) ◦ λL ◦ (q

B
(b) · y)

= (p
B
⊗ p

B
)(λL ◦ qB (b) · y)

= ((p
B
⊗ p

B
) ◦ λL ◦ qB (b)) · y

= λB(b) · y,

for all b, y ∈ B. Similarly, λB(yb) = y · λB(b) for all b, y ∈ B.
For converse, suppose that B is ψ−biprojective. Then there exists a bounded B-

bimodule morphism λB : B −→ B⊗̂B such that ψ ◦πB ◦λB = ψ. Define the map λL : L −→
L⊗̂L by

λL(a, b) := (S
B
⊗ S

B
) ◦ λB(b),

for all a ∈ A and b ∈ B. It is easy to see that

πL ◦ (S
B
⊗ S

B
) = S

B
◦ πB , (0, ψ) ◦ S

B
= ψ, ((S

B
⊗ S

B
) ◦ λB(b)) · x = 0,

for all b ∈ B and x ∈ A. So, these relations conclude that λL is a L−bimodule morphism
and L is (0, ψ)−biprojective. Therefore,

(0, ψ) ◦ πL ◦ λL = (0, ψ).

�

Remark 2.1. Note that (φ, θ)−biprojectivity of L implies that B is θ−biprojective. To see
this, we know that there exists a L−bimodule map λL : L −→ L⊗̂L such that

(φ, θ) ◦ πL ◦ λL = (φ, θ).

Hence, it is clear that

p
B
◦ πL = πB ◦ (p

B
⊗p

B
), rA ◦ πL = πA ◦ (rA⊗rA), θ ◦ p

B
= (0, θ).

Define λB : B −→ B⊗̂B by λB := (p
B
⊗p

B
) ◦ λL ◦ qB . Since

(
(φ, 0) ◦ πL ◦ λL

)
(0, b) = 0, we

have that (
θ ◦ πB ◦ λB

)
(b) = 〈(φ, θ), (0, b)〉 −

(
(φ, 0) ◦ πL ◦ λL

)
(0, b)

= θ(b),

for all b ∈ B. Thus, B is θ−biprojective. Moreover, if e is unit for A, then(
θ ◦ p

B
◦ πL ◦ λL

)
(e, 0) = 1.

So, we can define λB as following

λB(b) := b · ((p
B
⊗p

B
) ◦ λL(e, 0)),

for all b ∈ B. It implies that B is θ−biprojective.

Recently, in [17], Sahami and Pourabbas introduced and studied the new concept of
φ−biflatness for Banach algebras. In fact a Banach algebra A is called φ−biflat if there
exists a bounded A−bimodule morphism λA : A −→ (A⊗̂A)∗∗ such that φ̃ ◦ π∗∗A ◦ λA = φ,

where φ̃(F ) = F (φ) for all F ∈ A∗∗.

Proposition 2.3. Suppose that A and B are two Banach algebras. Let θ ∈ σ(B) and
φ ∈ σ(A). If L is (φ, θ)−biflat, then A is φ−biflat.
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Proof. By hypothesis there exists the bounded L−bimodule morphism λL : L −→ (L⊗̂L)∗∗

such that (̃φ, θ) ◦ π∗∗L ◦ λL = (φ, θ). Define a bounded A−bimodule morphism λA : A −→
(A⊗̂A)∗∗ by λA := (r

A
⊗ r

A
)∗∗ ◦ λL ◦ qA . It is clear that

(rA ⊗ rA)∗(φ ◦ πA) = (φ, θ) ◦ πL.

Therefore it concludes that

〈φ̃ ◦ πA∗∗ ◦ λA, a〉 = 〈λA(a), πA
∗(φ)〉

= 〈λL(a, 0), (rA ⊗ rA)∗(φ ◦ πA)〉
= φ(a),

for all a ∈ A. Thus, A is φ−biflat. �

Proposition 2.4. Suppose that A and B are two Banach algebras which A is unital and
ψ, θ ∈ σ(B). Then L is (0, ψ)−biflat if and only if B is ψ−biflat.

Proof. First suppose that L is (0, ψ)−biflat. Then there exists a bounded L−bimodule

morphism λL : L −→ (L⊗̂L)∗∗ such that (̃0, ψ) ◦ π∗∗L ◦ λL = (0, ψ). But, we know that

π∗B(ψ) = ψ ◦ πB . Now, define λB : B −→ (B⊗̂B)∗∗ by

λB := (p
B
⊗ p

B
)∗∗ ◦ λL ◦ qB .

It is easy to see that πL
∗((0, ψ)) = (pB ⊗ pB)

∗
(ψ ◦ πB). So, we obtain

〈ψ̃ ◦ πB∗∗ ◦ λB , b〉 = 〈πB∗∗ ◦ λB(b), ψ〉
= 〈λB(b), ψ ◦ πB〉
= 〈λL((0, b)), (p

B
⊗ p

B
)∗(ψ ◦ πB)〉

= ψ(b),

for all b ∈ B. To prove the only if part, suppose that B is ψ−biflat. Then there exists the
bounded B−bimodule morphism λB : B −→ (B⊗̂B)∗∗ such that ψ̃ ◦ π∗∗B ◦ λB = ψ. By an
easy calculation, we have

(SB ⊗ SB)∗((0, ψ) ◦ πL) = πB
∗(ψ).

Define the map λL : L −→ (L⊗̂L)∗∗ via

λL := (S
B
⊗ S

B
)∗∗ ◦ λB ◦ pB

.

Hence, it is easy to see that λL is a bounded L−bimodule morphism and (̃0, ψ)◦πL∗∗◦λL = ψ.
It follows that L is (0, ψ)−biflat. �

Note that in the proof of Proposition 2.4 (if part), if we define λB as λB = (p
B
⊗

p
B

)∗∗ ◦ λL ◦ SB
, then we can see that B is ψ−biflat.

3. φ−Johnson amenability

The notion of φ−Johnson amenability for Banach algebras is defined by Sahami and
Pourabbas, see [17]. A Banach algebra A is called φ-Johnson amenable (φ-Johnson con-
tractible), if there exists an element m ∈ (A⊗̂A)∗∗ (m ∈ A⊗̂A) such that a ·m = m · a and

φ̃ ◦ π∗∗(m) = 1(φ ◦ π(m) = 1) for all a ∈ A, respectively. By [17, Lemma 2.1], the Banach
algebra A is φ−Johnson amenable if and only if there exists a bounded net (mα) ∈ A⊗̂A
such that a · mα − mα · a −→ 0 and φ ◦ π(mα) −→ 1, for all a ∈ A. In this section, we
consider hereditary properties of φ−Johnson amenability for Banach algebras. Next, we
turn our attention to the structure of σ(A ×θ B). We study φ−Johnson amenability for
A×θ B and obtain it’s relationship with φ−Johnson amenability of A and B.
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Proposition 3.1. Let A and B be two Banach algebras, ψ ∈ σ(B) and T : A −→ B be a
continuous homomorphism. Then we have the following statements.
a) If T has dense range, 0 ∈ Im(T ) and A is (ψ ◦ T )−Johnson amenable, then B is
ψ−Johnson amenable.
b) If T is a bijective mapping and B is ψ−Johnson amenable, then A is (ψ ◦ T )−Johnson
amenable.

Proof. The proof is clear by [17, Lemma 2.1] and [8, Proposition 3.5]. �

Recall that if I is a closed two-sided ideal of Banach algebra A and φ ∈ σ(A), then
φ|I ∈ σ(I). Also, if ϕ ∈ σ(I), then it has an extension ϕ ∈ σ(A). Moreover, if φ ∈ σ(A),

then φ̂ : AI −→ C defined by φ̂(a+ I) = φ(a) is a character on A
I . Hence, by the Proposition

3.1, φ̂−Johnson amenability of A/I implies the φ−Johnson amenability of A.

Corollary 3.1. Suppose that I is a closed two-sided ideal in Banach algebra A and φ ∈ σ(A).

Then φ−Johnson amenability of A implies the φ̂−Johnson amenability of A/I.

We know that the quotient map q : A×θB −→ (A×θ B)/A is continuous epimorphism
and (A×θ B)/A is isometrically isomorphic to B. So, similar to Proposition 3.1 we have
the following result.

Proposition 3.2. Suppose that A and B are two Banach algebras, φ ∈ σ(A) and θ ∈ σ(B).
If A×θ B is (φ, θ)−Johnson amenable, then
(a) A is φ−Johnson amenable, provided that A is unital.
(b) B is θ−Johnson amenable.

Proof. (a) Let A×θ B be (φ, θ)−Johnson amenable. Then there exists a net (Uα) in (A×θ
B)⊗̂(A ×θ B) such that (a, b) · Uα − Uα · (a, b) −→ 0 and ((φ, θ) ◦ π)(Uα) −→ 1. Moreover,
we can write Uα = uα + mα + nα + να such that uα ∈ A⊗̂A, mα ∈ A⊗̂B, nα ∈ B⊗̂A and
να ∈ B⊗̂B for all α. Now, if b = 0, then

a · uα + a · nα − uα · a−mα · a −→ 0,

a ·mα + a · να −→ 0, nα · a+ να · a −→ 0, (1)

(φ ◦ π)(uα) + (φ ◦ π)(mα) + (φ ◦ π)(nα) + (θ ◦ π)(να) −→ 1

for all a ∈ A. Suppose that A has the unit e. From (1) we conclude that

mα + e · να −→ 0, nα + να · e −→ 0

and

(φ ◦ π)(mα) + (φ ◦ π)(e · να) −→ 0, (φ ◦ π)(nα) + (φ ◦ π)(να · e) −→ 0.

Hence, the above facts give that

a · (uα − [θ(π(vα))e⊗ e]) − (uα − [θ(π(vα))e⊗ e]) · a
= a · uα − [θ(π(vα))a⊗ e]− uα · a+ [θ(π(vα))e⊗ a]

= a · uα + a · nα − uα · a−mα · a
−→ 0.

Also, we have

(φ ◦ π)(uα − θ(π(να))e⊗ e) = (φ ◦ π)(uα)− (θ ◦ π)(να) + (φ ◦ π)(mα)

+(φ ◦ π)(e · να) + (φ ◦ π)(nα) + (φ ◦ π)(να · e)
= (φ ◦ π)(uα) + (φ ◦ π)(mα)

+(φ ◦ π)(nα) + (θ ◦ π)(να)

−→1.
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So, A is φ−Johnson amenable.
(b) From these facts that A ×θ B is (φ, θ)−Johnson amenable and (A ×θ B)/A is

isometrically isomorphic to B, we have B is θ−Johnson amenable. �

Proposition 3.2 concludes that if A ×θ B be (0, ψ)−Johnson amenable, then B is
ψ−Johnson amenable. In general, we do not know whether the reverse of Proposition 3.2
in the certain case is correct or not. So, we formulate it as a question.

Question. If B is ψ−Johnson amenable, then is A×θ B, (0, ψ)−Johnson amenable?

Proposition 3.3. Suppose that A and B are two Banach algebras, φ ∈ σ(A) and θ ∈ σ(B).
If A is φ−Johnson amenable, then A×θ B is (φ, θ)−Johnson amenable.

Proof. There exists a net (uα) in A⊗̂A such that a ·uα−uα ·a −→ 0 and (φ◦πA)(uα) −→ 1
for all a ∈ A. Also, uα =

∑∞
i=1 a

α
i ⊗ a′αi for some aαi , a

′α
i ∈ A. By definition the net as

Uα :=
∑∞
i=1(aαi , 0)⊗ (a′αi , 0) ⊆ (A×θB)⊗̂(A×θB). Therefore, by using this net the Banach

algebra A×θ B is (φ, θ)−Johnson amenable. �

4. Some Applications

Suppose that A is a Banach algebra and φ ∈ σ(A). Then the Banach algebra A is
called left φ-amenable (left φ-contractible) if there exists a bounded net (mα) in A (an
element m in A) such that amα − φ(a)mα → 0 (am = φ(a)m) and φ(mα)→ 1 (φ(m) = 1)
for all a ∈ A, respectively, see [8] and [12].

Example 4.1. The set C1[0, 1] consists of all differentiable functions which its first deriva-
tion is continuous. With the point-wise product C1[0, 1] becomes a Banach algebra. Also,
σ(C1[0, 1]) = {φt : t ∈ [0, 1]}, where φt(f) = f(t) for all t ∈ [0, 1]. In this example, we claim
that C1[0, 1]×θ C1[0, 1] is neither (φt, θ)−biflat nor (0, φt)−biflat. We assume in contradic-
tion that C1[0, 1] ×θ C1[0, 1] is (φt, θ)−biflat or (0, φt)−biflat, where φt(f) = f(t) for each
t ∈ [0, 1]. It is clear that 1 is an identity for C1[0, 1]. So, C1[0, 1] is φt−biflat. Therefore,
there exists a C1[0, 1]−bimodule morphism ρ : C1[0, 1] −→ (C1[0, 1]⊗̂C1[0, 1])∗∗ such that

φ̃t ◦ π∗∗ ◦ ρ(f) = φt(f)

for all f ∈ C1[0, 1]. Put m = ρ(1), we have

f ·m = fρ(1) = ρ(f1) = ρ(1f) = ρ(1)f = m · f,
and

φ̃t ◦ π∗∗(m) = φ̃t ◦ π∗∗ ◦ ρ(1) = φt(1) = 1,

for all f ∈ C1[0, 1]. It follows that C1[0, 1] is φt−Johnson amenable. Thus, [17, Proposition
2.2], implies that C1[0, 1] is left φt−amenable which is impossible by [8, Example 2.5].

Recall that the Banach algebra A is called character biflat (character biprojective) if
A is φ-biflat (φ-biprojective) for each φ ∈ σ(A), respectively, see [15].

Proposition 4.1. Suppose that G is a locally compact group and M(G) is the measure
algebra over G. Let θ ∈ ∆(M(G)). Then M(G) ×θ M(G) is character biflat if and only if
G is a discrete amenable group.

Proof. Let M(G) ×θ M(G) be character biflat. Since M(G) is unital. As in the previous
example, M(G) is left and right φt−amenable for all φ ∈ σ(M(G)) (By placing m = ρ(e)
where e is the unit of M(G)). We know that M(G) has a bounded approximate identity, thus
M(G) is character amenable. So, [10, Corollary 2.5] implies that G is a discrete amenable
group.
For converse, let G be a discrete amenable group. Then M(G) = `1(G). Hence by using
Johnson Theorem `1(G) is amenable. Therefore, [2, Corollary 2.1] finishes the proof. �
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Proposition 4.2. Let G be a locally compact group. Then M(G) ×θ M(G) is character
biprojective if and only if G is finite.

Proof. Let M(G) ×θ M(G) be character biprojective. Then by Proposition 2.1, M(G) is
character biprojective (M(G) is unital). So, by [17, Lemma 3.2], M(G) is φ−Johnson
contractible for all φ ∈ σ(M(G)). Also, using the same arguments as in [17, Proposition
2.2] implies that M(G) is left φ−contractible for all φ ∈ σ(M(G)). We know that M(G) is
unital, therefore M(G) is character contractible. From [12, Corollary 6.2], we have G is a
finite group. Converse is clear. �

It is well-known that the Fourier algebra A(G) over a locally compact group G is a
commutative Banach algebra. Also, σ(A(G)) = {φg : g ∈ G}, where φg(f) = f(g).

Theorem 4.1. Let G be a locally compact group. Then M(G)×θ A(G) is character bipro-
jective if and only if G is a finite group.

Proof. Let M(G)×θ A(G) be character biprojective. Since M(G) has an identity and A(G)
is commutative, for each γ ∈ σ(M(G)×θA(G)) there exists an element aγ ∈M(G)×θA(G)
such that aaγ = aγa and γ(aγ)=1, for all a ∈ M(G) ×θ A(G). Similar to the proof of
[16, Theorem 3.2], we can see that M(G) ×θ A(G) is γ-Johnson contractible, for all γ ∈
σ(M(G) ×θ A(G)). Following the arguments in [17, Proposition 2.2], one can see that
M(G)×θA(G) is left γ-contractible, for all γ ∈ σ(M(G)×θA(G)). Applying Proposition 2.1,
leads to that M(G) is character biprojective. Since M(G) is unital, character biprojectivity
of M(G) implies the character contractibility of M(G). Using [12, Corollary 6.2] gives that
G is a finite group. �

Remark 4.1. In the sequel, suppose that G is a locally compact group. A linear subspace
S1(G) of L1(G) is said to be a Segal algebra on G if it satisfies the following conditions

(i) S1(G) is dense in L1(G),
(ii) S1(G) with a norm || · ||S1(G) is a Banach space and ||f ||L1(G) ≤ ||f ||S1(G) for every

f ∈ S(G),
(iii) for f ∈ S1(G) and y ∈ G, we have Ly(f) ∈ S(G) the map y 7→ Ly(f) from G into

S1(G) is continuous, where Ly(f)(x) = f(y−1x),
(iv) ||Ly(f)||S1(G) = ||f ||S1(G) for every f ∈ S1(G) and y ∈ G.

It is well-known that S1(G) always has a left approximate identity. We remind that a Segal
algebra is a left ideal of L1(G) and for a Segal algebra S1(G) it has been shown that

∆(S1(G)) = {φ|S1(G)
|φ ∈ ∆(L1(G))},

for more information see [13] and [1, Lemma 2.2].

Proposition 4.3. Suppose that G is a locally compact group and ϕ, θ, ψ ∈ σ(S1(G)). If
S1(G)×θ S1(G) is either (ϕ, θ)−biflat or (0, ψ)−biflat, then G is amenable.

Proof. It is well-known that S1(G) has a left approximate identity. Therefore, S1(G) ×θ
S1(G) has a left approximate identity. Hence, [5, Theorem 3.1] follows that S1(G) ×θ
S1(G) is either left (ϕ, θ) or (0, ψ)−amenable. Therefore, S1(G) is left ϕ−amenable (or left
ψ−amenable). Thus [1, Corollary 3.4] follows that G is an amenable group. �

Example 4.2. Let S be the left zero semigroup. That is a semigroup S such that st = t
for all s, t ∈ S. It is easy to see that for the semigroup algebra `1(S), fg = φS(g)f for all
f, g ∈ `1(S), where φS is the augmentation character on `1(S). Note that `1(S) only has a
right unit and σ(`1(S)) = {φS}. Suppose that |S| ≥ 2. Then we claim that `1(S)×φS

`1(S)
is not (φS , φS)−Johnson amenable. We assume in a contradiction that `1(S) ×φS

`1(S) is
(φS , φS)−Johnson amenable, then `1(S) is φS−Johnson amenable. So, [17, Proposition 2.2]
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implies that `1(S) is left φS−amenable. Applying [8, Theorem 1.4], follows that there exists
a bounded net (mα) in `1(S) such that

amα − φS(a)mα −→ 0, φS(mα) = 1,

for all a ∈ `1(S). It implies that

amα − φS(a)mα = a− φS(a)mα −→ 0.

Suppose that s1 6= s2 ∈ S and δs1 6= δs2 ∈ `1(S). So, replace a with δs1 and δs2 . It follows
that

δs1 − φs0(δs1)mα = δs1 −mα −→ 0, δs2 − φs0(δs2)mα = δs2 −mα −→ 0.

Therefore, mα −→ δs1 and mα −→ δs2 which is a impossible.

Theorem 4.2. Suppose that the semigroup S has a unit. Then `1(S) ×θ `1(S) is either
(φS , θ)- biprojective or (0, φS)−biprojective if and only if S is finite, where φS is the aug-
mentation character.

Proof. We know that `1(S)×θ `1(S) has the unit. Thus, by [17, Lemma 3.2], `1(S)×θ `1(S)
is (φS , θ), (0, φS)−Johnson contractible. Similar to Proposition 3.2, we can see that `1(S) is
φS−Johnson contractible. So, there exists m′ ∈ `1(S)⊗̂`1(S) such that a ·m′ = m′ · a and
φS(π(m′)) = 1, for all a ∈ `1(S). Define T : `1(S)⊗̂`1(S) −→ `1(S) by T (a⊗ b) := φS(b)a,
for all a, b ∈ `1(S). It is easy to see that T is linear and continuous which satisfies

aT (m′) = T (a ·m′) = T (m′ · a) = φS(a)m′, φS ◦ T (m′) = φS ◦ π(m′) = 1,

for all a ∈ `1(S). Similarly, if we define T (a ⊗ b) := φS(a)b, then we can find an element
m′′ ∈ `1(S)⊗̂`1(S) such that

m′′a = φS(a)m′′, φS(m′′) = 1,

for all a ∈ `1(S). Put m = m′ ⊗m′′. Thus,

a ·m = am′ ⊗m′′ = φS(a)m′ ⊗m′′ = m′ ⊗m′′φS(a) = m′ ⊗m′′a = m · a,

φS(π(m)) = φS(m
′
m

′′
) = φS(m

′
)φS(m

′′
) = 1,

for all a ∈ `1(S). Putting a = δs, we have that δsm = φS(δs)m
′ ⊗m′′ = m, mδs = m.

Therefore,

δsπ`1(S)
(m) = π

`1(S)
(δsm) = π

`1(S)
(m) = π

`1(S)
(mδs) = π

`1(S)
(m)δs.

Thus, we find an element f = π
`1(S)

(m) ∈ `1(S) such that δsf(x) = f(xs) = f(x) = f(sx) =

fδs(x), for all s, x ∈ S. If x = e is a unit for S, then we have that f(s) = f(e). It gives
that f is a constant function in `1(S). Using φS(π

`1(S)
(m)) = φS(f) = 1 implies that f 6= 0.

Therefore, S must be a finite semigroup. �

Equip N with the multiplication m∨n = max{m,n} for all m,n ∈ N. So, N with this
multiplication denoted by N∨ becomes a semigroup. It is clear that `1(N∨) is a commutative
Banach algebra and δ1 ∗ δn = δn = δn ∗ δ1 for all n ∈ N. Thus, `1(N∨) is unital.

Corollary 4.1. The Banach algebra `1(N∨) ×θ `1(N∨) is neither (φN∨ , θ)-biprojective nor
(0, φN∨)-biprojective, where φN∨ is the augmentation character on `1(N∨).

Proof. We assume conversely that `1(N∨)×θ`1(N∨) is either (φN∨ , θ)-biprojective or (0, φN∨)-
biprojective. Since N∨ has unit, the previous Theorem gives us that N∨ must be finite which
is impossible. �

Let A be a Banach algebra and φ ∈ σ(A). A Banach algebra A is called φ−inner
amenable if there exists a bounded net (eα) in A such that aeα − eαa → 0 and φ(eα) → 1
for all a ∈ A, see [6].
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Example 4.3. Let A = {
(
a b
0 d

)
: a, b, d ∈ C} be a matrix algebra. Then φ : A −→ C

defined by φ(

(
a b
0 d

)
) = d is a character on A. We claim that A ×θ A is neither (φ, θ)-

biflat nor (0, φ)−biflat, where θ ∈ σ(A). Suppose in contradiction that A×θA is either (φ, θ)-
biflat or (0, φ)-biflat. Since A×θA is unital, therefore A×θA is either (φ, θ)-inner amenable
or (0, φ)−inner amenable. So, by [17, Proposition 3.3 ], A ×θ A is (φ, θ), (0, φ)−Johnson
amenable. Applying Proposition 3.2, we have A is φ−Johnson amenable. Using [17, Propo-

sition 2.2] implies that A is left and right φ-amenable. Define J := {
(

0 b
0 d

)
: b, d ∈ C}

and φ|J 6= 0. It is easy to see that J is a closed ideal of A. Since A is left φ-amenable, from
[8, Lemma 3.1] we have that J is φ|J−amenable. Applying [8, Theorem 1.4], there exists a
bounded net (uα) in J such that juα − φ(j)uα −→ 0 and φ(uα) = 1 for all j ∈ J . Assume

that j =

(
0 j1
0 j2

)
and uα =

(
0 wα
0 vα

)
, for some j1, j2, wα, vα ∈ C. Thus,

juα − φ(j)uα =

(
0 j1wα
0 j2vα

)
−
(

0 j2wα
0 j2vα

)
−→ 0.

It gives that j1vα − j2wα −→ 0. If we put j1 = 1 and j2 = 0, then the contradiction reveals.
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