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DEVELOPMENT OF THE TAU METHOD FOR THE
NUMERICAL STUDY OF A FOURTH-ORDER PARABOLIC
PARTIAL DIFFERENTIAL EQUATION

Babak SOLTANALIZADEH !, Hadi Roohani GHEHSAREH?, Saeid
ABBASBANDY ?

In this paper, an approximate method based on matrix formulated
algorithm is presented for numerical study of a fourth-order parabolic partial
differential equation. For the numerical section, shifted Standard and shifted
Chebyshev bases are utilized. Several numerical examples are presented to confirm
the efficiency and accuracy of this procedure.

Keywords: fourth-order equation; parabolic equation; matrix formulation
method; orthogonal polynomials.

1. Introduction

An operational technique for the numerical solution of nonlinear ordinary
differential equations based on the Tau method [1] is presented by Ortiz and
Samara [2]. Afterwards, many authors have been used this method and some other
similar methods for solving various types of equations. In [3], this method is used
for linear ordinary differential eigenvalue problems and in [4] it is used for partial
differential equations. This method has been developed for different types of
integral and integro-differential equations [7, 8]. Authors of [9] used this method
for the system of nonlinear Volterra integro-differential equations. Some matrix
formulation techniques with arbitrary polynomial bases [5] and shifted Standard
and shifted Chebyshev bases [6], have been proposed for the numerical solutions
of the heat and wave equations with nonlocal boundary conditions. Similar works
can be found in [10, 11, 12, 13, 14].

In this paper, we focus on the following parabolic equation

U _ 2Ntk (1)
ot? ox* ”
with the following initial conditions
u(x,0)=r(x),redo<x<l, (2)
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u, (x,0) = s(x), red0< x <I, 3)
and the boundary conditions

u(0,t) = p(t),0<t<T, 4

u(d,t) =g(t),0<t<T, (5)

u,(0,t) =k(t),0<t<T, (6)

u,(1,t)=q(t),0<t<T, (7

where u is the transverse displacement of the beam, t is time and x is distance
variable and f (x,t) is dynamic driving force per unit mass. the functions f (x,t),
r(x), s(x), p(t), g(t),k(t) and q(t) and the constants « are known.

Problem (1)-(7) is the problem of undamped transverse vibrations of a
flexible straight beam in such a way that it’s supports do not contribute to the
strain energy of the system. Recently, various authors focused on the development
of numerical techniques for the solution of the Eq. (1) [15, 16, 17, 18, 19]. Aziz
et. al [15] presented a three level method based on parametric quintic spline in
space and finite difference discretization in time. In [16], a fifth-degree B-spline
scheme is proposed for the numerical solution of the problem (1)-(7). Authors of
[17, 18] proposed some finite difference schemes. Wazwaz [19], solved Eq. (1) by
using the Adomian decomposition method.

2. Formulation of the method.

We assume that the functions f(x,t), r(x),s(x), p(t), g(t),k(t) and q(t)
generally are polynomials. otherwise, we can approximate these functions by one
or two variate Taylor and Chebyshev series. Let

v = [0y (X),0,(X),0,(X),...,0,(X)]" is a polynomial basis vector given by v =VX
and o =[w,(t),»,t),»,(t),...,0, (t)]" is a polynomial basis vector given by
o=WT, where V and W are nonsingular lower triangular matrices and
X =[1,%x,%x*,...,x"]", T =[L,t,t*,...,x"]". So by using above polynomial basis
vectors, we get
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f (x,t);iif”ui (X, (t) =0 Fo,

i=0 j=0

r(x);Zn:riui (x)=0'R, s(x);Zn:siui (x)=0'S,

m m 8
PO P, () = Pa, 91D 0,0, =Co, ©®
j=0 j=0
k()Y k;0,(t) = Ko, q(t); Y 9,0,(t) = Qa,
j=0 j=0
where
R = [rO'rl’rZ"'”rn]T! S = [SO’SI’SZ’""Sn]Ti P = [pO’ pl' p21"'7 pn]!
G =[90:091, 970 Pul, K=1TKg ki, Ky Ky 1o Q =00, 0,0y, G ],
F = [FO’ Fl’ FZ""’ Fm]’ FJ = [f0j1 f]_jy fzjy--'y fnj]Ty J = 0,1,2,---,m.
Therefore, the approximate solution of the u(x,t) can be shown as
U,n(Xt)= ZZuijui(x)a)j (t)=v'Uo, 9)

i=0 j=0
where U =[U,,U,U,,...,U, 1, with U; =[uy;,uy;,Uyj,.., Uy T
Therefore, for finding the numerical approximation solution of u(x,t) we
must find the matrix U. The matrix U is an (n+1)x(m+1) matrix which
contains (n+1)x(m+1) unknown coefficients. To find these (n+1)x(m+1)
unknowns, we have to generate (n+1)x(m+1) equations.

Corollary 2.1. Let g,,.(x,y)=0'Gw, and G=[G,,G,,G,....G,] with
Gj :[go,j'gl,j’g2,j""’gn,j]l then

r

dx”

r

dy"

Jom(X, ¥) =0"(Dy) Go,

9om (X, Y) =0 GDjo, (10)

where D is the operational derivative matrix.
Firstly, by applying Egs. (8) and (9) in Eq. (2), we have
v'Uw(0)=0"R,
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which implies
Uw(0) =R, (12)
where @(0) = [@,(0), »,(0),,(0),...,w, (0)]" .
And by applying Eqgs. (8), (9) and (10) in Eq. (3), we have
v'UD,w(0)=0v'S
hence
UD,w(0) =S, (12)
since v is a basis vector.
Similarly, by using Egs. (8), (9) and (10) in Egs. (4)-(7), we have
0" (OUw =P,

' (WUw =Go,
0" (0)(D, )*Uw = Ko,

o' (1)(D] Vo = Qo

which implies
v (O)U =P, (13)
o' (U =G, (14)
0" (0)(D,)’U =K, (15)
o’ (1)(D;)°V =Q, (16)

where 0" (0) = [1v,(0),0,(0),...,0,(0)]" and " (1) =[v,(1),0,(1),...,0, (D] .
Finally, by applying Egs. (8), (9) and (10) in Eq. (1), we obtain
v'UD w—av’ (D])*Uw=0v"Fo,
hence the residual Res(x,t) for above equation can be written as
Res(x,t) = v"Haw,
where

H= (UDE —a(D])*'U -F),
since v and @ are basic vectors.

For finding a typical matrix formulation, similar to the typical Tau
method, we eliminate two last columns and four last rows of the matrix H , then



Development of the Tau method for the numerical study [...] partial differential equation 169

we generate (n—3)x(m—1) linear algebraic equations by using the following
algebraic equations:
H; =0, i=012...,n-4, j=012..m-2. (17)

Therefore, we can find 2n+2 linear algebraic equations from Eqgs. (11) and (12),
(m-1) linear algebraic equations by choosing (m—1) equations from Eq.(13)
and similarly, (m-1) equations from Eq. (14), (m—1) equations from Eq. (15),
(m-1) equations from Eq. (16) and finally, (n—3)x(m-1) equations from Eq.
(17). Notice that in this paper, we eliminate two last elements of Eqs.(13)-(16).
Now, a system of (n+1)x(m+1) equations is generated.

3. Application on Several Bases

In this section, we introduce the shifted Standard and shifted Chebyshev
bases and applied this bases for numerical computations of the method.

3.1. Shifted Standard Bases

In this section, we give some properties of shifted standard bases. Let,
I I I T T T

=[1,(x—=),(x—=)%,...,(x-=)"]" and =[1,(t-=), (t—=)%....,(t—)"].
0=[LX=2) (x=2)% e (X=2)] @=[L{=2) =) (t=2)7]

Therefore we have

Uy (X, 1) = Z“Z“uij(x—l—)‘(t—l)j =v"Uw. (18)
i=0 j=0 2 2

Now for computing (n+1)x(m+1) unknown coefficients u; in Eq.(18), with the
matrix formulation method, we can obtain (n+1)x(m+1) linear algebraic
equation from Egs. (11)-(17). In addition, the matrices D, and D, are the
operational derivative matrices given by

0 00O0..00 0 0 0 O 0 0]

1 000 00 1 000 0 0

0200 00 0 200 0 0
D,=|/0 0 3 0 00 ,D,=[0 0 3 0 0 0

0 00O n 0 0 00O m 0

L Jd(n+1)(n+1) L J(m+1)(m+1)
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So, by using above matrices and Eqgs.(11)-(17), the unknown coefficients
u; can be obtained. Then by Eq.(18), u, ,(x,t) can be calculated.

3.2. Shifted Chebyshev Bases

The matrix formulation method by using shifted Chebyshev bases is
considered in this section. The shifted Chebyshev polynomials on the interval
[0,s] are defined as

. . 2X—5S
TO (X) = 1’ Tl (X) = S ]

N0 -TL00, 1223,

In this case, the functions u, . (x,t), f(x,t), r(x),s(x), p(t) and q(t) are written
as

T () =2(

U (DS UTI 0T (@) TGS T 0T 1),

YR (0, SO0 YT 00, O S0 ) 9

g(t); Zg T, k), ik,—T,—T (t), a(t); iq,—T,—T (),

where the symbol (") over Z indicates that the first and last terms must be
halved. ~ Therefore,  suppose that o =[T,(x),T,(X),....,T)(x)]" and

o=[T, (),T, (t),...,T, (t)]. Then the matrices D, and D, for odd n(or m) are
given as

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 4 0 0 0 0 0
203 0 6 0 0 0 0
D, =—. i ) ) :
I : : : : : :
0 2n-1) 0 2(n-1) ... 2(n-1) 0 O
n 0 2n 0 0 2n 0
L Jnsnynsa)

and for even m (or n) are given as
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0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 4 0 0 0 0 0

2 3 0 6 0 0 0 0
D == . ) ) ) . )
T : : : : : :

(m-1) 0 2(m-1) O ... 0 2(m-1) O

0 2m 0 2m ... 2m 0 2m

L J(m+1)(m+1)

Also, r, p; and f; are computed by the following relations

= (E)Zr(xk)cos("(—”), i=01,...,n,
N =0 n

2. & jsty .
= (= t —), j=01,....m,
P; (m)gp(s)cos( - ) m

jsz

4 -
fi —(n.m)ZZf(Xk,ts)COS( o ) cos( ol

k=0s=0
where

X = %[(I —0)cos(k7”)+(| +0)], k=01,...n,

N |-

t, =T —0)cos(%”)+(T +0)], s=01,....m,

similarly, s; and q;, g; and k; can be computed.

4. Numerical results

In this section, we illustrate efficiency and accuracy of the presented
method by the following numerical examples. We define some of the errors as
follows:

Uy —U" L, =max{|u, . (x,t)—u"(x,t)|, 0<x<I, 0<t<T}
”un,m_u*“tj,oozmaX{lun,m(X’tj)_U*(X’tj)|’ OSXSl},

where u, . (x,t) is the obtained approximation result for n and m and u is the
exact solution of the problem.
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Example 4.1 Consider the following fourth-order equation

Uy = Uy = —2(1+ X2 = x* = x°) +120x(1-t - t?),
u(x,0) =1+x*—x*-x°, u,(x,0) = -1-x* +x* + x°,
u(0,t) =1-t—t* u(1,t)=0,

u, (0,t) =2(1-t-t?), u (1,t) = -24(1-t-t%).

By wusing the SS base and choosing n=m=5, we obtain
Uss (X, t) = (1+ %% = x> = x°)(1-t —t?), which is the exact solution of the problem.
Example 4.2 Consider the following fourth-order equation
U, —U, = (1-7*)sin(zx)exp(-t),
u(x,0) = sin(ax), u,(x,0) = —sin(zx),
u(,t) =u(1,t)=u,(0,t) =u,(1,t) =0,
The exact solution of this problem is u(x,t) = sin(zx)exp(-t).

The maximum obtained errors and some other errors by the presented
method for several values of m and n, for SS and SC bases, are reported in Table
1.. Furthermore the graphs of error functions for SS and SC bases are given in Fig

1. and 2. respectively.
Table 1.

The maximum errors (|| U, , — u”||,,) from Example 4.2.

m=n=10 m=n=20 m=n=30
SS 7.055x10° | 7.171x10% | 6.658x10°%
SC 1.027x107° | 1.607x10% | 7.065x107*%

|0-39

Fig 1.: Plot of error function | U(X,t) —Ug, 4, (X,t) |, with SS bases for Example 4.2.
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Fig 2.: Plot of error function |U(X,t) — Uy, 4, (X,t) |, with SC bases for Example 4.2.

Example 4.3 Consider the following fourth-order equation
= (1-277)cos(zx)exp(t),

u(x,0) = cos(nx), u,(x,0) =cos(zx), u(0,t) = exp(t),
u(l,t) = —exp(t), u,(0,t) = —z%exp(t), u,(1,t) = z°exp(t).

The exact solution of this problem is u(x,t) = cos(zx)exp(t).
The obtained errors by the presented method for several values of m and

n, for SS and SC bases, are reported in Table 2. and the graphs of error functions
for SS and SC bases are given in Fig 3. and 4. respectively.

The maximum errors (|| U, ,, — u” ||,,) from Example 4.3.

m=n=10 m=n=20 m=n=30
SS 5.409x10™* | 3.271x10% | 9.279x107%
SC 1.489x10°° | 4.455x107Y | 1.783x107*

Table 2.

Fig 3.: Plot of error function |U(X,t) — Uy, (X,t) |, with SS bases for Example 4.3.
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102

Fig 4.: Plot of error function [U(X,t) — Uy, 3 (X, t) |, with SC bases for Example 4.3.
Example 4.4 Consider the following fourth-order equation
u, —u. = (7* -1)sin(zx)cos(t),
u(x,0) = sin(ax), u,(x,0) =0,
u(,t) =u(1,t) =u,(0,t) =u,(1,t) =0,
The exact solution of this problem is u(x,t) = sin(zx)cos(t).

The computational results for the Example 4.4. are presented in Table 3. In

addition, the plots of corresponding error functions are shown in Fig 5. and Fig 6.
Table 3.

The maximum errors (|| U, ,, — u” ||,,) from Example 4.4.

m=n=10 m=n=20 m=n=30
S5 2.213x10™ | 9.493x10" | 9.888x10%
SC 1.152x107" | 4.611x10% | 2.287x10°*

0%

Fig. 3: Plot of error function | U(X,t) —Ug, 4, (X,t) |, with SS bases for Example 4.4.
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Fig. 4: Plot of error function [ U(X,t) —Ug, 30 (X,t) |, with SC bases for Example 4.4.

6. Conclusions

In this research, A high accuracy numerical scheme is proposed for the
numerical studying of a forth order parabolic partial differential equation with
some initial and boundary conditions. The most important section of our method
is converting the model of PDE to a linear system of algebraic equations. The
method is based on finding a solution in the form of a polynomial in two
variables. In addition, by increasing the number of terms in the series we can
decrease the error of this process. Finally, the effectively of our method can be
shown by the numerical test problems.
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