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ADVANCED MULTI-OBJECTIVE ALGORITHM USED TO 

OPTIMIZE CONSUMPTION OF AN INTEGRATED SYSTEM 

FOR FLEXIBLE MANUFACTURING 
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The optimization of power consumption of manufacturing lines (ML) is a 

relevant topic in the context of increasing electricity prices. This paper presents the 

topic of optimizing the energy consumption of a production system, through 

optimization technique based on the multi-objective PSO (Particle Swarm 

Optimization) algorithm. The novelty of the approach lies in the development of an 

Advanced PSO algorithm (APSO), which brings superior results in optimizing energy 

consumption. The research was carried out in successive stages, starting with data 

collection, and ending with the implementation of the results on the production line, 

everything being subordinated to the criterion of optimizing energy consumption. 

APSO's advanced optimization technique was implemented on a flexible 

manufacturing line (FML) composed of five linearly interconnected workstations. The 

APSO optimization algorithm, following implementation and testing on FML, 

provides a solution for controlling the conveyor speeds of each station that guarantees 

in the overall approach to the process a minimum energy consumption, but also a 

minimum execution time of the algorithm.  

Keywords: flexible manufacturing line (FML), power consumption monitoring, 

multi-objective optimization algorithm, PSO algorithm applied to 

optimize energy consumption 

1. Introduction 

In the current context of rising electricity prices and the growing need to 

implement environmental protection policies proposed mainly through the 

principles formulated by Industry 5.0, it is noted that factories must use increasingly 

 
1 National University of Science and Technology POLITEHNICA of Bucharest. Automation and 

Industrial Informatics Department, e-mails: paun_marius_2009@yahoo.com, 

grigore.stamatescu@upb.ro, iliescu.shiva@gmail.com, ioana.i.fagarasan@gmail.com. 
2, Faculty of Electrical Engineering, Electronics, and Information Technology Valahia University 

of Targoviste, Romania, e-mails: coanda_henri@yahoo.com, eugenia.minca@gmail.com, 

drg_florin@yahoo.com; 
3 Institute of Multidisciplinary Research for Science and Technology, Valahia University of 

Targoviste, Romania, e-mail: octavian_duca@yahoo.com. 
4  Academy of Romanian Scientists, 54, Splaiul Independentei, 050044 Bucharest, Romania  

mailto:iliescu.shiva@gmail.com
mailto:drg_florin@yahoo.com


114      M.-A. Păun, H.-G. Coandă, E. Mincă, O. Duca, I. Făgărășan, F. Dragomir, S. S. Iliescu 

 

high-performance equipment with low electricity consumption [2,5]. Thus, to 

improve consumption parameters and productivity, computational modelling is 

mainly used for efficient planning, control, and management of workloads in 

different production scenarios. Emphasis is placed on streamlining the consumption 

parameters of already processed and integrated production equipment [3]. 

In order to make the power consumption of a manufacturing line more 

efficient, the following steps must be applied: monitoring, analysis and 

management. At each stage, it is necessary to use a hardware and software 

infrastructure adapted to the type of implemented production system [4]. The 

analysis phase has the greatest complexity in terms of the fact that to make 

electricity consumption more efficient, optimization algorithms appropriate to the 

existing problem can be applied [7]. 

Achieving a high-performance optimization requires the use of algorithms 

such as: PID algorithms, fuzzy algorithms, metaheuristics algorithms, 

reinforcement learning algorithms, neural network algorithms, multiagent 

algorithms, predictive algorithms, etc [6]. Amongst the algorithms listed, it can be 

appreciated that metaheuristic optimization algorithms show good efficiency 

compared to other algorithms [14]. These algorithms propose iterative processes 

and concepts derived from artificial intelligence to easily identify the optimal 

solution or a value close to the optimal solution [1]. Among the metaheuristic 

algorithms for optimization proposed, in this paper, the PSO algorithm was chosen. 

The present paper addresses the problem of optimizing power consumption 

by applying a multi-objective optimization algorithm on consumption data taken 

from a FML through six chapters: Introduction, Comprehensive overview of the 

FML and the power consumption monitoring system (PCMS), Modelling of power 

consumption through linear regression (LR) and statistical analysis of results, 

Advanced PSO optimization algorithm applied to optimize energy consumption, 

Advanced PSO algorithm versus PSO approach Discussion and Conclusions. 

2. Comprehensive overview of the FML and the power consumption 

monitoring system (PCMS) 

The manufacturing system on which the research will be carried out is an 

educational manufacturing line consisting of seven manufacturing stations, each 

station performing specific operations on the working product (Fig. 1). Among 

these seven stations, six are equipped with conveyors for transporting parts inside 

and between stations, thereby enabling the manufacturing process to proceed in a 

continuous flow. The system can achieve flexible manufacturing from the 

perspective of the type of product as well as from the perspective of the assembled 

configuration adapted to market requirements [15]. 

The assembly process implemented on the manufacturing line is aligned 

with market demand and, by extension, customer preferences. The products made 
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are educational in nature, they are assembled for demonstration purposes. The 

assembly of products requires the sequential passage of the working part through a 

defined number of stations in a predetermined order, that corresponds to the specific 

assembly requirements. Consequently, depending on the type of product, a certain 

manufacturing flow will be used [9]. 
 

 
Fig. 1. Flexible manufacturing line (FML) equipped with manipulators and mobile robots, for 

assembly-disassembly operations. 

 

The assembly process encompasses three the production of three distinct 

product types: type A product, type B product and type H product (Fig. 2) where: 

⎯  Type A product, characterized as a straightforward product, comprises the 

subsequent components arranged in the specified sequence: transport tray, 

basal part, small parts layer, and top part;  

⎯ Type B product, classified as a complex product, comprises the subsequent 

components arranged in the specified sequence: transport tray, basal part, 

small parts, top part, small parts, and top part;  

⎯ Type H product is a hybrid product that has the characteristics of previous 

products with the difference that it can have small parts of different sizes.  

All three pieces can be performed both sequentially and in a pseudo-parallel 

manner.[8] 

           
Fig. 2. Product types assembled/disassembled on FML: a) product A – simple product; b) product 

B complex product; c) product H - hybrid typology. 

 

a) b) c)

) 
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The FML allows the implementation of the disassembly process in two 

separate workstations (WS) in WS3 and WS7. Both WS are equipped with robots 

adapted to the tasks they perform. These robots have dedicated clamping systems 

with which they can carry out every step of the disassembly process. Given the 

system's architecture, which allows to produce distinct product types, it is necessary 

that the disassembly process be carried out in accordance with the structure of the 

product. Consequently, for disassembling a product a number of disassembly tasks 

equal to the number of assembly tasks must be used. 

For advanced analysis of consumption behaviour, FML was equipped with 

power meters on each WS. The architecture of the consumption data acquisition 

system (Fig. 3) was adapted to the architecture of the production system. In this 

approach, the PCMS allows the analysis of WS behaviour in an integrated manner. 

The PCMS (Fig. 3) comprises several components, including seven measuring 

meters with communication via Modbus RTU protocol, control panel, Modbus 

RTU – USB converter and embedded Raspberry Pi 3B+ system. The meters are 

connected to a Modbus RTU bus.  
 

 
Fig. 3. Architecture of the PCMS.  

 

The utilization of this system offers several advantages. It allows the use of 

a programming language such as Python that uses data analysis libraries. Moreover, 

it is running at high code execution speed, and offers the possibility of creating 

graphical interfaces. Additionally, it exhibits low power consumption, contributing 

to energy efficiency. Nevertheless, if the system is used in a sealed and ventilated 

automation enclosure, the system can deliver high performance at a cost-effective 

price point. 
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Tabel 1.  
Average acquisition times of energy consumption data for each WS 

WS WS1 WS2 WS3 WS4 WS5 WS6 WS7 

Data acquisition time (s) 0.279 0.279 0.23 0.279 0.318 0.28 0.318 

 

Table 1 presents the performance metrics related to data acquisition from 

meters via the Modbus protocol. It is important to highlight that the Modbus 

protocol does not support parallel querying of connected meters. The data 

transmission rate of the counters operates at 9600 bits per second, which causes a 

correlation between the amount of data transferred and the time.  

In the context of the meters installed on workstations, the approximate 

transfer data time is 0.32s. However, in the case of the manufacturing process of a 

product with straightforward architecture, six power meters were analysed, this 

results in an acquisition time of approximately 1.92 seconds for each individual 

meter. This acquisition time is not convenient because it does not permit a 

comprehensive analysis of the station's consumption behaviour. The solution found 

and to mitigate this time constraint involved activating each meter only when its 

corresponding station is in production. Thus, a single request can be achieved 

observing the consumption behaviour for each station in a time of 0.32s. However, 

it's important to acknowledge that in production scenarios, there may arise instances 

where two, three, four, five, or even all six meters are concurrently in use.  

3. Modelling of power consumption through linear regression (LR) and 

statistical analysis of results 

For each WS, energy consumption data at different working speeds were 

collected by the developed monitoring system. Subsequently, the collected data 

underwent a thorough analysis during which mathematical models of energy 

variation depending on the conveyor's working speed were generated by applying 

LR. In order to change the conveyor speed, a telegram transmitted from the 

programmable automatic controller (PLC) to the driver/converter in the WS is used. 

The LR formula is represented by means of the relationship between a 

dependent variable (often denoted as "Y"), in this case total power consumption, 

and one or more independent variables, as appropriate, (often denoted as "X"), in 

this case the equivalent velocity [10]. The LR formula (1) for independent single-

variable is: 

*
0 1

Y X  = + +  (1) 

Where: Y - dependent variable, x - independent variable, i - regression 

coefficient and  - error term.  
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By utilizing the LR formula to the data collected for each WS the production 

system, mathematical models were created. The mathematical model obtained for 

each WS are presented in formula 2. 

1 1 1

2 2 2

3 3 3

4 4 4

(-0.0008*v +8.4175)*(v *0.0114+69.304)+tsi *43.9193

(-0.0035*v +20.209)*(v *0.0481+70.804)+tsi *98.39177

Z= (-0.0052*v +21.350)*(v *0.0126+115.57)+tsi *178.834

(-0.0025*v +85.454)*(v *0.0021+189.36)+tsi *

5 5 5

131.9418

(-0.0034*v +24.056)*(v *0.0080+30.561)+tsi *25.11458

 
 
 
 
 
 
 
 

  (2) 

Where: iv - conveyor equivalent speed, and itsi - the stationary time caused 

by the operation of the next station. 

In the formulation of these models, consideration was given to the 

incorporation of lower and upper boundaries. The upper boundary, named as the 

maximum equivalent workstation (WS) speed, was represented by the value 2000, 

while the lower boundary, named the minimum equivalent WS speed, was 

represented by the value 1000. The LR model was used because the conveyor driver 

over the speed range has a linear behavior. Thus, the LR model best shows the 

behavior of the conveyor belt speed – energy consumption in the declared speed 

range.  

The total power consumption change equation for a process implemented 

on manufacturing lines will be the sum of the power consumption corresponding to 

each workstation: 
1

y= z(i)   i=1, 2, ... 5
i
  (3) 

4. Advanced PSO optimization algorithm applied to optimize energy 

consumption 

PSO is an optimization algorithm inspired by the collective behaviour of 

birds or fish. This algorithm finds extensive applications in addressing single-

objective optimization problems and multi-objective optimization problems across 

diverse fields of endeavour. PSO provides an effective approach to exploring the 

solutions space and finding optimal solutions or in cases where exact optimality is 

challenging, it excels in finding solutions that are close to optimal [12]. 

The PSO algorithm aims to find an optimal solution to the problem in the 

following form: 

1 2 3 4( , , , ,...., ) ( )nf a a a a a f A=  (4) 

Where: na  - variable in state space and ( )f A  - global minimum/maximum 

optimization value. 
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Fig. 4. Schematic representation of the PSO iterative algorithm 

 

The fundamental concept underlying PSO entails creating a population of 

particles that move through state space to find the best solution. Each particle 

represents a candidate solution with its own position and speed in the search space. 

The particle's position indicates a potential solution, while its velocity governs both 

the direction and the extent of its movement. The subsequent position of the particle 

is determined by the following relationship: 
1 1k k k

i i ia a v+ += +  (5) 

Where: k

iv  - the velocity vector specific to each particle i, it reflects both 

social behavior and personal learning behavior and k -current iteration value. 

The objective is to iteratively fine-tune particle positions and velocities to 

progressively converge towards the optimal solution (Fig. 4). 

The motion of particles in PSO algorithm is influenced by their best position 

( bestP ) but also by their optimal overall position ( bestG ). Particles adjust their speeds 

by considering these positions and their interactions with one another, with the 

objective of advancing towards superior solutions. This interaction is governed by 

social and cognitive components, which control the balance between exploration 

and exploitation [11]. During each iteration, particles update their velocities and 

positions based on the following equations: 

1
  a   a, ,, , 1 1, 2 2,

* * * * *
k k k kk kP Gbest besti j i ji j i j j j

V V c r c r
+    

− −
      

= + +  (6) 

In these equations, kV  and kA  represent the velocity and position of a 

particle at time t, respectively. The parameter “ ” is the weight of inertia 

controlling the impact of the particle's previous velocity and controls the balance 

between exploration and exploitation, 1c  and 2c  determine the influence of the 

particle's best-known position ( bestP ) and the best-known position across all 

particles ( bestG ). The " bestP " signifies the best value achieved by a particle, while "

bestG " signifies the best value obtained by any particle in the entire swarm. 

Furthermore, " 1

kr ”and “ 2

kr ” generate a random number ranging between 0 and 1. 

The calculation bestP  assumes the following formula: 
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1

, ,

, 1 1

,

( ( )

( ( )

k k k

best i i best ik

best i k k k

i i best i

P if f a P
P

a if f a P

+

+ +

 
= 


 (7) 

The calculation bestG  involves the use of the following formula: 

 , ,min k

best i best iG P= ; 1,2 .,i n=   and 1n   (8) 

Another aspect that should be mentioned, is that in the algorithm was 

applied with dynamic inertia weight, more precisely the parameter   dynamically 

changes its value according to the equation: 

max min
max

max

k t
k

 
 

 −
= −  

 
                   max min    (9) 

Where: max min,   - interval of change of inertia weights and maxk  - 

maximum number of iterations. 

Additionally, the condition proposed by Van den Bergh and Engelbrecht, 

Trelea [13] was applied to reduce the chance of divergent conduct, formulated as 

follows: 

1 2 1
2

c c


+
 −  (10) 

The process continues until an algorithm break condition is met, such as 

reaching a maximum number of iterations or obtaining a satisfactory solution. The 

best solution identified during iterations is considered the optimal or near-optimal 

solution to the optimization problem. 

5. Advanced PSO algorithm versus PSO approach. Discussion  

The PSO optimization algorithms were tested on an HP workstation 

featuring the following hardware configuration: dual Intel Xeon E5-2650 

processors with a frequency of 2.0 GHz and eight cores, 128 GB of RAM, an Nvidia 

Quadro K4200 graphics card with 4 GB of memory, and a storage capacity of 1 TB. 

The optimization problem proposes adjusting the equivalent conveyor 

speeds with the aim of identifying the most advantageous speeds in terms of both 

the overall energy consumption of the manufacturing system and the reduced 

execution time of the PSO optimization algorithm. This approach was designed to 

facilitate rapid optimization responses. Due to the multiple assembly capabilities, 

the scenario in which the system assembles a product in simple configuration was 

considered, i.e. the product passes through the first five workstations (Fig. 5). 
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Fig. 5. Applied multi-objective algorithm - APSO implemented for optimization of 

assembly/disassembly process of FML. 

 

The procedure addresses the issue of optimizing energy consumption as 

follows: starting from the data collected with the monitoring system, mathematical 

models related to the energy consumption of workstations are made by applying LR 

on them, and finally the PSO algorithm will be applied on these mathematical 

models. Thus, for each WS, cycle times, variation of cycle time depending on 

conveyors speed, local delay time in the station and variation of station energy 

consumption were considered. Furthermore, constraints are imposed on the station's 

delay time, which must always be greater than or equal to zero, as well as on the 

state space. 

Optimizing energy consumption solves the problems related to obtaining 

minimum energy consumption, but also effectively eliminates the risk of bottleneck 

production processes. To expedite the optimization process, another PSO algorithm 

has been integrated to optimize the parameters of the energy consumption 

optimization algorithm. Through this optimization procedure, it becomes possible 

to achieve minimal power consumption optimization time while still ensuring the 

reduction of power consumption to its minimum level. 

The initial PSO algorithm configuration includes the following 

specifications: it involves six input variables, uses for each variable two vectors 

with upper limit (value 2000) and lower limit (value 1000), an initial population 

comprising 50 individuals and allows a maximum number of 1000 iterations. Thus, 

the PSO algorithm applied to the working speeds of stations aims to find the global 

minimum: 

1 2 3 4 5( , , , , ) ( )f v v v v v f V=  (11) 

Where: 1 2 3 4 5, , , ,v v v v v - values of speeds for which the minimum power 

consumption is achieved and ( )f V  - minimum value of power consumption. The 

constraints of the algorithm refer to the following formula: 
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1000 2000 1,2,3,4,5;lv l  =  (12) 

In addition, conditions have been applied to the delay times for each 

assembly station as follows: 

0 ( 0) 1,2,3,4,5;l ltsi if tsi l=  =  (13) 

 
a)                                                     b) 

Fig. 6. a) PSO algorithm convergence chart on cartesian scale and b) PSO algorithm convergence 

chart on logarithmic scale. 

 

The algorithm successfully converges towards the optimal solution, which 

corresponds to a minimum power consumption value (Fig. 6) of 0.11903 kW*h 

(428511.66 W*s). The speed values that allow achieving this energy performance 

are: v1=1000, v2=2000, v3=1564, v4=2000, v5=1000 and v6=2000.The execution 

time of the algorithm in MATLAB is 3.755 s. The delay times at assembly stations 

corresponding to these speed values are ti1= 6.0722s, ti2= 0s, ti3 = 67.2370s, ti4 = 

0s, and ti5 = 0s. 

Substantial enhancements were introduced to the initial PSO algorithm. 

These modifications include: an algorithm stop criterion largely dependent on 

changes to the global minimum, an optimization algorithm was applied to the initial 

algorithm, hereinafter referred to as optimizer, and state space constraints were 

applied by introducing upper limits and lower limits. 

The advanced PSO (APSO) is a PSO-based algorithm that adjusts various 

parameters, including the number of particles, the number of iterations, algorithm 

inertia coefficients, degrees of individual and social confidence, and the number of 

loop repetitions until optimization function's value remains unchanged.  

The optimizer assumes that bestGo
is: 

1 2 min( , , , , , , ) | ( )best Max Min execution timeGo g n k c c rep g B = =
 

(14) 

Where: bestGo - the overall minimum execution time of the algorithm; n  -

number of particle; ( )g B  - the overall minimum/maximum value of the algorithm's 

execution time; , ,Max Min   - algorithm inertia coefficients; - 1 2, ,c c  degrees of 
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individual and social confidence, and - the rep  number of repetitions of the overall 

minimum value for the maximum algorithm that stops the execution of the 

algorithm.  

In order to provide viable results, the algorithm must have integrated a 

condition that excludes all values obtained for tests performed on the parameters of 

the PSO algorithm that do not reach at least the value bestG  obtained after 

application without the optimizer. The data exclusion criterion is: 

1000 ( )

( )

best

best

t

best

t

calc best

if G Pt
time

time if G Pt

 
= 



 (15) 

Where: bestG  - the minimum obtained by applying the PSO algorithm 

without the optimizer, t

bestPt - the overall minimum time at iteration t, time  - time 

calculated within the Optimizer, and - calctime  the overall minimum value of the 

electrical power calculated at the iteration t of the optimizer t

bestPt  

Besides, for each optimized variable, constraints were defined in the form 

of maximum and minimum limits of the space states. 

10 60n   (16) 
min0.01 0.29   (17) 

400 1000Iter   (18) 
11 3c   (19) 

max0.3 0.9   (20) 
21 3c   (21) 

5 10rep   (22)   

Consequently, after optimization, the APSO algorithm it is adapted to 

optimize FML power consumption. The integration of the optimizer into the initial 

algorithm has yielded substantial improvements in execution time. Therefore, the 

algorithm has been improved in terms of optimization time more than ten times, 

starting from an execution time of 3.755 s to an execution time of 0.262 s. 

Furthermore, the convergence charts demonstrate that optimization performance 

has not changed (Fig. 7). 
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a)                                                       b) 

Fig. 7. Optimizer execution time with APSO. The convergence graph on cartesian scale (a) and 

logarithmic scale (b) 

 

The optimal numerical values that yield the best performance in terms of 

execution time for the PSO algorithm are as follows: 10 particles, maximum 

number of iterations is 402, maximum inertia coefficient is 0.657, minimum inertia 

coefficient is 0.039, individual confidence is 1.031, social confidence is 2.712 and 

maximum number of repetitions is 6 (Table 2). These parameter values have been 

adjusted by optimizer to significantly enhance the algorithm's execution efficiency 

while maintaining its optimization efficiency. 
Tabel 2.  

Features of applied algorithms 
Algorithm n Iter ωmin ωmax c1 c2 rep Time (s) 

PSO 50 1000 0.9 0.2 1.9 1.9 6 3.755 

APSO 10 402 0.657 0.037 1.031 2.712 6 0.262 

6. Conclusions 

The present work presented the results obtained for the application of a 

multi-objective algorithm on the energy consumption data to identify the work 

speeds of the FML workstations but also to identify the tuning parameters of the 

intensified PSO algorithm for optimal results. 

In summary, an advanced APSO algorithm is conceptually presented that 

performs an intensified optimization, in the sense of increasing the accuracy and 

efficiency of calculations, versus the PSO algorithm. The objective of the research 

was to identify a high-performance technique for optimizing energy consumption 

in a flexible manufacturing process. The APSO algorithm was implemented and 

tested on an FML system, equipped with local (workstation) and total energy 

consumption monitoring systems. Following the implementation and testing of 

APSO on FML, it resulted that energy consumption monitoring provides data at 
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sample intervals of 0.32s, while APSO provides the iterative optimization solution, 

every 0.262s. The time window corresponding to an APSO interaction is 

subordinated to that corresponding to a data acquisition cycle, which guarantees the 

efficiency of the APSO.  

The optimization procedure proposed and demonstrated in this article 

allows reducing energy consumption on the FML in the most convenient time. This 

methodology can be applied for any manufacturing line that asselmby products in 

manufacturing flow to obtain minimum power consumption.  
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