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THE SACKIN INDEX OF RANDOM RECURSIVE TREES

Khosro Moradian®, Ramin Kazemi?, Mohammad H. Behzadi®

The Sackin index of a tree as of the oldest measures that summarizes the
shape of a tree is defined as the sum of the depths of its leaves. In this paper, we study
this index in random recursive trees. The mean of this index is given. The lower and
upper bounds of the probability generating function are given. Finally, a submartingale
on this indez is introduced.
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1. Introduction

A graph is a collection of points and lines connecting a subset of them [1]. The points
and lines of a graph are also called vertices and edges of the graph, respectively. Trees
are defined as connected graphs without cycles, and their properties are basics of graph
theory. For example, a connected graph is a tree, if and only if the number of edges equals
the number of nodes minus 1. Furthermore, each pair of nodes is connected by a unique
path. A rooted tree is a tree with a countable number of nodes, in which a particular node
is distinguished from the others and called the root node. Recursive trees are one of the
most natural combinatorial tree models with applications in several fields, e.g., it has been
introduced as a model for the spread of epidemics, for pyramid schemes, for the family trees
of preserved copies of ancient texts and furthermore it is related to the Bolthausen-Sznitman
coalescence model. A recursive tree with n nodes is an unordered rooted tree, where the
nodes are labelled by distinct integers from {1,2,3,...,n} in such a way that the sequence
of labels lying on the unique path from the root node to any node in the tree are always
forming an increasing sequence [9]. This implies that the root node is always labelled by 1.
It is well known and easy to show by induction that there are (n—1)! different recursive trees
with n nodes. It is of particular interest in applications to assume the random recursive tree
model and to speak about a random recursive tree with n nodes, which means that one of
the (n — 1)! possible recursive trees with n nodes is chosen with equal probability, i.e., the
probability that a particular tree with n nodes is chosen is always 1/(n — 1)!. Equivalently
one may describe random recursive trees via the following tree evolution process, which
generates random recursive trees of arbitrary order n. At step 1 the process starts with the
root labeled by 1. At step i + 1 the node with label i 4+ 1 is attached to any previous node
v of the already grown tree T of order i with probability p;(v) = 1/i. Figure 1 illustrates a
recursive tree of order n = 7.

The article is organized as follows. In Section 2, we review some previous results on
the Sackin index in random trees. In Section 3, first the mean of this index is given. Second,
the lower and upper bounds of the probability generating function are given. Finally, a
submartingale on this index is introduced.

IDepartment of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran.
2Department of Statistics, Imam Khomeini International University, Qazvin, Iran, e-mail:
r.kazemi@SCI.ikiu.ac.ir
3Department of Statistics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

125



126 Khosro Moradian, Ramin Kazemi, Mohammad H. Behzadi

(1

OO
©

FIGURE 1. A recursive tree of order n = 7 with Sackin index S7 = 7 [6].

2. Sackin index

The distance Dj, between the root and node k in a random recursive tree has been
studied by many authors, including Moon [11], Szymanski [15]. The total path length of a
recursive tree, namely,

n
T, = Dy, (1)
k=1

defined as the sum of all root-to-node distances. This random variable may serve as a global
measure of the cost of constructing the tree. The strong dependence among the random
variables D, makes it nontrivial to obtain the exact distribution of D,, be the nth harmonic
number. Howevere E(Dy) = Hy_1. Linearity of expectation gives

E(Tn) = n(Hn - 1)1 (2)

which is asymptotically equivalent to nlnn. Sackin index is one of the oldest measure that
summarizes the shape of a tree [12, 13]. It adds the number of internal nodes between each
leaf of the tree and the root to form the following index S,, = Z?:l N; , where the sum
runs over the n leaves of the tree and IN; is the number of internal nodes crossed in the
path from ¢ to the root (including the root). An equivalent formulation of S, is by counting
the number of leaves under each internal nodes S,, = Z;:ll N, where N is the number of
leaves that descend from the ancestor j. This is a well-known result in systematic biology
that the expectation of S, under the Yule model is of order 2nlnn [7]:

E(S,) = 2n(H, — 3/2).

The variance is more complex, but it can be estimated by noticing the analogy with a
classical problem in theoretical computer science. Let T,, be the set of isomorphism classes
of phylogenetic trees with n leaves. Then under the uniform model,

__n (2)k(2)(2 — n)x 2
ElSn) = 573 ];) (1k)k(4k— 2n)kkﬁ’

where (a) := a(a +1)...(a + k£ — 1) [10].

3. The Main Resluts

For a (rooted) path P,, Sp, =1x (n—1) =n—1. For astar S,,, Ss, = (n—1)x1=
n—1. Thus Sp, = Ss, = (n—1).
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Theorem 3.1. Let S, be the Sackin index of the random recursive tree of order n, Then
forn >3

550 - (- 3).

Proof. Let U, be a randomly chosen node belong to T of order n and F,, be the sigma-field
generated by the first n stages of the recursive trees. Also, let

I(Dy) = 0, if node k is a leaf or root in T of order n — 1
)= D, ifnode k is a non-leaf in T of order n — 1.

By stochastic growth rule of the random recursive trees and definition of .S,,,

Sn =Op-1+ H(DUTL,l) + 1. (3)
From (3),
E(Sn|Fn-1) = Sn-1+EI(Dy, ,)|Fn-1)+1
n—1
1
= Sp1+ o1 Z I(D;) +1, (4)

i=1
since S,,—_1 is F,—1-measurable [2] and the label n is attached to any node v of the already
grown tree T of order n — 1 with probability ﬁ But

1
I[(D’L) = Tn—l - Sn—l~
1

n

%

Thus
(S| Ft) = =280+ — T 41 (5)
niJn—1 77’?/—1 n—1 n—1 n—1 .
Taking expectation of the relation (5):
n—2 1
E(S,) = E(S,_ 1) + ——FE(T,_1) + 1
(Sn) 1 B(Sh-1) + 7 E(Th-1) +
n—2
= E(S,— H,_;.
 B(Sn-1) + Hus (6)

The recurrence equation (6) leads to

n—2

1

E(Sn) n—1 n_1 J;jHj =+ Hn—l
B 1 1 /(n—2)(n-1) (n—2)(n—-1)
B n—1+n—1( 2 Hpa 4 1)
+ anl
n 1
= 3(m—3)

O

Theorem 3.1 shows that E(S,,) is asymptotically equivalent to % Inn. Stanley [14]
gives the following mapping. Let ¢ = (01,...,0,—1) be a permutation on {1,2,...,n — 1}.
Construct a recursive tree with nodes 0,1,...,n — 1 by making 0 the root and defining the
parent of node i to be the rightmost element j of o which both precedes ¢ and is less than
i. If there is no such element j, then define the parent of ¢ to be the root 0. Finally, to
convert to a recursive tree on nodes {1, 2, ...,n}, simply add 1 to each label. For example, the
permutation (1,2, 3) corresponds to the linear tree of order 4 where i is the parent of i+1 for
i =1,2,3; the permutation (3,2, 1) corresponds to the tree where nodes 2, 3, and 4 are each
children of the root 1. This mapping is bijective between permutations of {1,...,n — 1} and
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recursive trees with label set {1,...,n}. Note that in this correspondence the order of the
subtree rooted at node 2 is one greater than the number of elements in the corresponding
permutation of order n—1 that succeed 1. This number, in turn, is just » minus the position
of 1. The position of 1 is, of course, distributed uniformly on {1,...,n — 1}.

Theorem 3.2. Forn > 3,
S L M+ Sy + Sp_m>

where M is the number of leaves in the subtree rooted at node 2 and the random variables
M, S, ..Sm, ST, ..., Si_y are all mutually independent.

Proof. Let M be the number of leaves in the subtree rooted at node 2. Then M + Sy,
accounts for the contribution to Sackin index in the subtree rooted at node 2, and S _,,
accounts for the contribution to Sackin index from all the remaining subtrees. The theorem
will follow from the fact that in a random recursive tree of order n the order of the subtree
rooted at node 2 is distributed uniformly on {1,...,n — 1}. a

Theorem 3.3. Let ¢,(t) = >, t*P(S,, = k) be the probability generating function of S,
Then for n > 3,
tn—l tn—l 1
<)< — ——.
(n—1)! < onlt) < n—1+1—t
Proof. Given tree T of order n — 1, pick a node uniformly at random. If leaf v is picked,
then tree T' of order n is formed by making node n as a child of v and S,, = S,_1 + 1. If
non-leaf v is picked, then S,, = S,,_1 + D,,. By this constraction, conditional on the tree T
of order n — 1,
L,_ —-1-L,_
P(Sy = k)= "L P(Sp_y =k — 1)+ L

n—1

P(Sn-1=k—D,),

n—1

where L,, is the number of leaves in T' of order n. It is obvious that max L,,_1; < n—2. Thus

2 Dy = k1) 4 — (7)

n—1 n—1

Multiplying (7) by t* and summing over ,

onlt) < "= 210, 1 (0) 4 o 3)
The recurrence (8) leads to
Oult) < 1" 2o () 4
But
1
Go(t) =Y tFP(Sy =k) =t.
k=1
Thus ) .
Pnlt) < n—ltn 1+ 1—t
We can obtain the lower bound similarly, since min L,,_; > 1. O

Definition 3.1. Let (2, F, P) be a probability space, {X1,Xa,...} a sequence of integrable
random variables on (,F, P), and F; C Fo C -+ an increasing sequence of sub sigma-fields

of F; X, is assumed F,-measurable. The sequence (X,)n>1 is said to be a submartingale
relative to the I, iff for alln =1,2,..., E(Xp41|Fn) > X, (a.e.).
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Theorem 3.4. Let S, be the Sackin index of the random recursive tree of order n. Then
the sequence (Zy)n>0 with

L = Sp — 5
1z a submartingale.

Proof. 1t is obvious that I(Dy, _,) > 0, then for all n > 2, S,, > S,,_1 + 1. Given the history
of insertions D1, ..., Dy _1, the values of 71, ..., Z,,_1 are completely determined. Therefore,
we can equivalently condition on Dy, ..., D, _1. From Theorem 3.1,

E(Zn|Z1, ., Zn_1) = E(Zy|D1,...,Dp_1)
1n 1
> E(S,_1 41Dy, .... Dy_1) — ff(an 7)
> (Sn—1 + 1Dy 1) ) 5
1 1 1
Sn—1+ 5 1+ w3
1 1
> _ - _ -
= Snfl 2(Hn71 2)
= Zp-1.
Also E(|Z,]) < oo exists for each n and proof is completed. O

By Theorem 3.4 and the submartingale convergence theorem [2], there is an integrable
random variable Z., such that Z,, — Z,, almost everywhere. Let T, 75, ... be an increasing
sequence of finite stopping times for (Z,)p>1 and Y, = Zp,, n =1,2,3,.... Also, let
1- E(Y,,) < oo for all n and
2- liminfy_, o f{Tn>k} |Z,|dP = 0 for all n.

By optimal sampling theorem, (Y,),>1 is a submartingale relative to the Fr, . Let T be a
stopping time for (Z,,)n>1. Then

E(Z1]) < 2B(Z)),
since Z1 = 0. If T' is a finite stopping time for (Z,),>1, then

E(|Zr|) < 2supE(Z,}).

Theorem 3.5. If A > 0, then P(maxi<i<n Z; > A) < ]E(%:‘r). Also

sup,, B(Z,})
S

Proof. This is an immediate consequence of Doob’s supermartingale inequality [2]. O

P(supZ, > \) <

4. Conclusion and open problems

In this paper, we studied the Sackin index in random recursive trees. The mean of
this index was given. The lower and upper bounds of the probability generating function
were given. Finally, a submartingale on this index was introduced.

An interesting and natural generalization of random recursive trees has been intro-
duced in [8] by Mahmoud and Smythe, which are called bucket recursive trees. In this model
the nodes of a bucket recursive tree are buckets, which can contain up to a fixed integer
amount of b > 1 labels. A probabilistic description of random bucket recursive trees is given
by a generalization of the stochastic growth rule for ordinary random recursive trees (which
are the special instance b = 1), where a tree grows by progressive attraction of increasing
integer labels: when inserting label n 4+ 1 into an existing bucket recursive tree containing
n labels (i.e., containing the labels {1,2,...,n}) all n existing labels in the tree compete
to attract the label n + 1, where all existing labels have equal chance to recruit the new
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label. If the label winning this competition is contained in a node with less than b labels
(an unsaturated bucket or node), label n + 1 is added to this node, otherwise if the winning
label is contained in a node with already b labels (a saturated bucket or node), label n + 1
is attached to this node as a new bucket containing only the label n 4+ 1. Starting with a
single bucket as root node containing only label 1 leads after n — 1 insertion steps, where
the labels 2,3, ...,n are successively inserted according to this growth rule, to a so called
random bucket recursive tree with n labels and maximal bucket size b. Of course, the above
growth rule for inserting the label n + 1 could also be formulated by saying that, for an
existing bucket recursive tree T' with n labels, the probability that a certain node v € T
with capacity 1 < ¢(v) < b attracts the new label n + 1 is proportional to the number of
labels contained in v, i.e., ?

Kazemi [4, 5] introduced a new version of bucket recursive trees where the nodes
are buckets with variable capacities labelled with integers 1,2,...,n. In fact, the capacity
of buckets is a random variable in these models. An order-n bucket recursive tree T' with
variable bucket capacities and maximal bucket size b starts with the root labelled by 1. The
tree grows by progressive attraction of increasing integer labels: when inserting label j + 1
into an existing bucket recursive tree T of order j, except the labels in the non-leaf nodes with
capacity < b all labels in the tree (containing label 1) compete to attract the label j+1. For
the root node and nodes with capacity b, we always produce a new node j + 1. But for a leaf
with capacity ¢ < b, either the label j+ 1 is attached to this leaf as a new bucket containing
only the label j+1 or is added to that leaf and make a node with capacity c+1. This process
ends with inserting the label n (i.e., the largest label) in the tree. Let |.| denotes the size of
sets. The probability p, which gives the probability that label n is attracted by node v in the
tree of order n — 1 is: p = #ﬁ)hl’

As an open problem, it would be interesting to consider the Sackin index of random
bucket recursive trees. Furthermore, it is challenging to determine extremal values of the
Sackin index among all trees with n vertices.

where v={v eT; ¢c=c(v) <b, and v is a non-leaf}.
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