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LIFE PREDICTION OF SATELLITE LITHIUM BATTERY 

BASED ON MULTI TIME-SCALE EXTENDED KALMAN 

FILTER (EKF) ALGORITHM 

Qian-Qian LIU1, Bing CHEN2, Jingyuan ZHANG3 

State-of-Charge (SOC) and the maximum available capacity estimation are the 

most important parts of satellite lithium battery life prediction. However, the 

parameters of the maximum available capacity change slowly compared with the fast 

time-varying SOC. This paper proposes a multi time-scale of Extended Kalman Filter 

(EKF) algorithm on SOC and the maximum available capacity for estimation on 

different time scales. The estimated value of SOC is used as an observation on the 

macro time-scale to update the maximum available power. The simulation results of 

experiment on NCA/C space borne lithium battery show that SOC and the maximum 

available capacity estimation from the proposed multi time-scale EKF algorithm has 

higher accuracy and computational efficiency compared with Dual EKF. 

Keywords: Satellite lithium battery SOC, the maximum available capacity, the 

venin circuit model, Multi time-scale Extended Kalman Filter (EKF) 

algorithm 

1. Introduction 

Lithium batteries are critical to the satellite power distribution systems and 

are gradually replacing traditional batteries as the third-generation satellites with 

energy storage [1].Owing to charge, discharge management and performance 

recession of lithium battery [2], its working state monitoring, performance 

degradation and residual life prediction (RUL) have become the key in the field of 

satellite system fault prediction and health management (PHM) research. 

The maximum available capacity of battery is often used as degradation 

characteristics of battery life. Precise SOC estimation can not only be used to assess 

the reliability of equipment but reflect the residual service life of the battery. In 

addition to the traditional open circuit voltage method and the ampere-hour integral 

method, literature [3] [4] [5] analyzed Kalman filter method applied to satellite 

lithium battery SOC estimation in detail. In Literature [6], the EKF algorithm was 

improved. The Sigma point set is constructed by using the state quantity and 

variance matrix. The Kalman filter algorithm based on Sigma point can achieve 
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better accuracy. In literature [7], the Kalman filtering algorithm was combined with 

the ampere-hour method. In literature [8], unscented Kalman filter was used for 

lithium battery SOC prediction. The dual EKF estimation algorithm put forward in 

[9] can make real-time SOC and maximum available capacity with voltage and 

current measurements with noise. 

The accuracy of maximum available capacity estimation obtained by using 

state and parameter estimation technology is poor, which has two reasons. One is 

that the voltage of the battery is the only measurement, but the connection between 

the maximum available capacity and the battery voltage is very weak; additionally, 

due to the strong correlation between SOC and the maximum available capacity, 

inaccurate maximum available capacity estimation would further lead to inaccurate 

SOC estimation, and vice versa. In terms of computational efficiency, maximum 

available capacity is the slow-time variable of indicator system of health (SOH) 

state [12], [13]. If the maximum available capacity and fast-time variable SOC are 

operated on the same time scale, which would lead to high computational 

complexity. In order to solve these difficulties, this paper proposes a multi time-

scale EKF algorithm to estimate the SOC and maximum available capacity 

respectively. Contribution mainly includes: (1) Multi time-scale SOC and the 

maximum available capacity of time scale separation estimation algorithm are 

proposed; (2) The estimated SOC is used to update the prediction value of 

maximum available capacity dynamically. As a technology of ampere-hour method 

and EKF filtering, this algorithm realized higher precision and efficiency than Dual 

EKF. 

2. Satellite lithium battery system description 

2.1Thevenin battery model 

The equivalent circuit model of satellite lithium battery is Rint model, RC 

model; Thevenin model and PNGV model [4] and so on. Thevenin model [9] 

considered the mutation and gradual change of battery voltage under the excitation 

of current, the structure is shown in Fig.1.The model parameters described as 

follows. is the open circuit voltage (OCV) of battery;  is used to describe the 

charge accumulation and dissipation of battery ohm resistance in double electric 

layers;
 

  describes the battery polarization resistance,   describes the battery 

polarization capacitance. The network they constructed is used to simulate the 

dynamic characteristics of satellite battery showing in the process of generation and 

elimination in the polarization phenomenon.
 

 is the polarization voltage on the 

 network,   describes the terminal voltage of battery,   describes the load 

current of battery (assuming discharge current is positive, and charge current is 

negative).  
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Fig.1 Thevenin equivalent circuit model 

SOC is defined as the ratio of available capacity to nominal capacity. When 

the environment temperature is certain, the relationship between OCV and SOC is 

not only a reflection of static characteristics of lithium battery [11], but also 

discernible. 

Set  , where   is used to describe the determined relationship 

between OCV and SOC. It is important to point out that the connection of battery 

SOC and its terminal voltage has been enhanced through the , which is very 

important for the improvement of SOC prediction accuracy. It can be known from 

Fig. 1 that the mathematical relationship of Thevenin model parameters can be 

expressed as follows: 

                              (1) 

                                       (2) 

Ampere-hour method is the simplest SOC estimation method which is 

currently used more frequently [14], [15]. It makes integral calculation with the 

current flowing through the battery in run-time to calculate the flowing in or out of 

battery. If the initial battery SOC value is available, it can be used for obtaining the 

battery remaining power. Eq. (3) is the foundation of SOC state equation: 

                                          
(3) 

where i is the current,  is the maximum available power consumption, t is 

the time and  is Coulomb effective factor, which is defined as the ratio required 

by charging and discharging energy restoring to the original power.  is less than 

or equal to 1. For example, in the discharge model, when the minimum discharge 

voltage is reached, it is thought that the battery has been completely discharged, and 

SOC is 0. 

Through the combination of Thevenin equivalent circuit model and 

Ampere-hour method, the battery parameters, SOC and its terminal voltage are 

associated. Taking SOC, polarization voltage  as state variables, state Eq. is 

obtained as follows: 
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(4) 

Taking terminal voltage  as measurement value, the observation Eq. is: 

                                                   
(5) 

2.2 Discretization model of multi time-scale 

The application object of EKF is nonlinear discrete systems, therefore, the 

continuous model in the above section needs discretization. For systems with very 

different parameter variations, we can set two-time scales: the macroscopic time-

scale and the microscopic time-scale. The system volume on the macro time-scale 

changes slowly with time but on the micro time-scale, it changes rapidly with time. 

For convenience,  and  is used as time index of macro time-scale and 

micro time-scale. Any moment can be expressed as , and there are relationships:
 

 ,  (  ,  ),  is a fixed time interval 

between two adjacent points. It should be noticed that  represents the level of 

time-scale separation. According to the change of system parameters, simulation 

time steps  of the macro time-scale can be determined; between time step and 

 , according to the change of system state variable, the sampling period  can 

also be determined, i.e. the micro simulation time steps  is determined. 

Considering that the model parameters is slow time-varying ,we assume that the 

battery is the time-invariant system, and load current is constant at each sampling 

interval .Then we can get the analytic solution Eq. (2): 

                 

(6) 

Battery model shown in Fig. 1 takes State of Charge   and polarization 

voltage 
  
as state variables, load current  as the input, terminal voltage  as 

output, it obtains after discretization in multi time-scale: 

                    

(7) 

Set , Eq. (8) is obtained from Eq. (3),  

                                                 
(8) 

Set , Eq. (9) is obtained from Eq. (4) to (8),  
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                     (9) 

The discretization state transition and measurement Eq. on multi time-scale are,  

                   

(10) 

where  ,  ,  ,  , and 
  
is the measurement 

value of the battery terminal voltage at . 

In order to make the following discussion be more general, Eq. (10) is changed to 

the following nonlinear state space model, 

                 

(11) 

where,   is the system state vector at time  ,  is the 

fixed time interval between the neighboring measurement point. It should be 

noticed that  represents the level of time separation, and  .   is the 

vector of system model parameters at ;
 
is the input of external observation 

source; 
 
is the vector of system observation value or measurement value.

 
 

and  are process noise vector of state and model parameters. is the vector of 

measurement voice, , ,k l k l kF x u （ , , ） and , ,k l k l kG x u （ , , ） are the functions of state 

transition and state measurement, respectively. 

3. Multi time-scale EKF algorithm 

As for the discrete model of the system on the multi time-scale, multi time-

scale EKF algorithm is used to predict the SOC and maximum available capacity. 

Multi time-scale EKF algorithm prediction process is divided into six steps, macro 

EKF and micro EKF execute together in the form of a nested loop. Within each 

macro time step , macro EKF executes time update step, state prediction step and 

measurement update step. Within each micro time step , micro EKF executes time 

update step and measurement update step. When  cycles to , the macro 

time step  ends and enters into the next macro time step . Regardless of macro 

or micro EKF, they both needs to get the experience value based on prior 

information to model parameters  and state for initialization before conduction. 

Covariance matrix and  for estimation error make initialization according 
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to priori information too. Basic steps are summarized in Table 1. 
Table 1.  

Multi time-scale EKF algorithm steps 

Steps Contents 

Step 1 

initialization

          

(12) 

On macro-scale ,  

Step 2 time update of macro EKF 
        

(13) 

Step 3 State prediction of macro EKF 
       

(14) 

Step 4 Measurement update of macro EKF 

         
(15) 

       
(16)

 
On micro-scale ,  

Step 5 Time update of micro EKF 

       
(17) 

Step 6 Measurement update of micro EKF 

      
(18) 

   
(19) 

Where, 

   
 
(20)

 

                              (21) 

 

3.1. Macro EKF 

Within each macro time step, parameter estimation value and at the 

previous step are calculated according to Eq. (13). And then we use micro EKF for 

predictive state according to Eq. (14), 1,00 k kL k-1,L-1F x u 
−

−

→（ , , ） is the iteration form of 

state transfer function , ,k l k l kF x u （ , , ）  in Eq. (11). Compare with the time and 

measurement update，the computational complexity needed by 

1,00 k kL k-1,L-1F x u 
−

−

→（ , , ）  calculation on micro time step  . On the measurement 

update procedures, predicted state calculated by macro EKF and micro EKF 

estimation state value are different, and difference is used to obtain the posteriori 
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parameter estimation, seen Eq. (16). Macro EKF has two distinct features: since it 

update S on the macro scale , the computational complexity is greatly reduced; 

macro EKF makes state estimation from micro EKF firstly and then updates the 

measurement. According to the Eq. (14) for state prediction achievement, the 

parameter estimated value generated is decoupling through state prediction. 

3.2 EKF Micro EKF 

As for state transition, micro EKF uses the estimated value of maximum 

available capacity achieved in the above macro time step procedure (seen Eq. (17)). 

It is worth mentioning that in the initiation of each macro time steps, i.e.,
 

, 

micro EKF sends a state estimation value to macro EKF, and then predicts the state 

according to the state of Eq. (14) at the macro time step. After completing the state 

prediction at each macro step, i.e., , micro EKF sends another state estimated 

value to macro EKF to compare with the predicted estimation and use its difference 

for correcting the parameter estimation value in the measurement update procedure 

of Eq. (16). 

3.3 Numerical implementation: Recursive differential calculation 

On the Multi time-scale EKF algorithm,   calculation in macro EKF 

involves in the total derivative of the state prediction function concerning the 

parameters: 

                                  

(22) 

State amount  is also the function concerning system parameter  , 

therefore, the total derivative is needed to split into partial derivative for circulated 

calculation. The following Eq. can be obtained: 

     

(23) 

                      
(24)
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(26) 

 can be obtained according to the recursive calculation of Eq.s (23)-(26). The 

partial derivative of state prediction parameters on state and parameter  can be 

calculated easily according to the confirmed function form. 
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3.4 Multi time-scale EKF algorithm to predict the satellite lithium 

battery SOC calculation process 

Next, the EKF prediction algorithm execution process of satellite lithium 

battery system with multi time-scale is introduced in this paper. Flow chart is shown 

in Fig. 2. Algorithm consists of two parallel extended Kalman filters; the upper part 

(micro EKF) modifies SOC on the micro time-scale, the lower part (macro EKF) 

modifies the power availability estimation value on macro time scale. Micro EKF 

sends SOC estimation value to macro EKF and receives maximum available 

capacity estimation value from macro EKF. 

 
Fig.2 Multi time-scale estimation flow chart of satellite lithium battery SOC based on EKF 

4. Simulation and Experiment Result 

4.1 Experimental process 

The NCA/C spaceborne lithium battery we used in this experiment is 1.6Ah. 

Test system includes comprehensive test equipment of satellite lithium battery, the 

temperature sensor module, NCA/C spaceborne lithium batteries, and the special 

install fixture. Test equipment can support 8 channels for experiment at the same 

time. According to the local test results, we use the data of battery No.37 for 

identification and simulation. The NCA/C spaceborne lithium battery used in the 

experiment and the experiment equipment are shown in Fig. 3. 

4.1.1 Relationship identification of open circuit voltage Uoc - SOC  

The process of model parameter identification and satellite lithium battery 

SOC estimation are both involved in the relationship identification between EMF 

(Electromotive Force) and SOC. Because EMF cannot be obtained by circuit 

experiment directly, the present researches mostly use the balanced voltage when 

battery opens, which is OCV to replace EMF; OCV and EMF are thought equal 

approximately. In section 2.1, the battery open circuit voltage (OCV) is replaced 

with , identified results are shown in Fig. 4. 
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              (a) NCA/C spaceborne lithium battery   (b) comprehensive test equipment of satellite lithium battery 

Fig.3 satellite lithium battery and experiment equipment. 

 

Fig.4 Open voltage and SOC relationship Fitting 

It can be seen from Fig.4 that with the rising of SOC, open circuit voltage 

is almost a linear relationship at 0.3<SOC<0.9; the open circuit voltage changes 

dramatically when SOC < 0.2. Therefore, the relationship fitting between open 

circuit voltage at 0.3<SOC<0.9 and SOC is: 

                     (27) 

4.1.2 Model parameter identification 

Thevenin equivalent circuit model contains parameter ,
 
and , which 

are needed to be identified before using the model. Experiments are conducted 

under 25  and the results of each parameter identification as shown in Fig.5:  

We found that in the process of discharge, although the change ranges of 
 
and

 
is larger, but the change trend is relatively stable. It can be seen that the change 

trends of them are on the contrary, which makes 
  
change little;  

fluctuates in the range of 0.032  to 0.033 , and there is no certain linear rule. 
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(a) is the relationship curve of discharge direction and SOC;  

(b) is the relationship curve of discharge direction and SOC; 

 
(c) is the relationship curve of discharge direction and SOC. 

Fig. 5 The relationship between the parameters (The red line is the fitted curve; discrete points 

represent the true value of identification experiment). 

4.1.3 Experimental verification under the custom working condition 

After model parameter identification complementation, the prediction 

model of satellite lithium battery SOC and maximum available capacity on multi 

time-scale is established. The discharge experiment under a set of custom working 

condition is used to test the estimation performance of the algorithm put forward 

on SOC. The custom condition test scheme used is as follows: firstly, let the battery 

fully rest, then discharges 500 seconds with the constant current 0.5 C=0.8A, rest 

50 seconds. And then let battery charge 50 seconds with the constant current 0.5 

C=0.8A. Repeat the above steps, 12 times in all. The experiment current is shown 

in Fig. 6. The experimental current is loaded to test equipment of satellite lithium 

battery according to the custom working condition. The current and voltage data of 

the battery is extracted after the experiment. The battery parameters obtained in the 

previous experiment corresponded to SOC from 0.3 to 0.9, in order to match the 

parameters, SOC in this experiment all changes from 0.3 to 0.9. This section uses 

Dual EKF and multi time-scale EKF algorithm respectively in the MATLAB 

pR

pC

tR
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software for offline verification on NCA/C lithium battery SOC and maximum 

available capacity estimation. Experiment is carried out fewer than 25 . 

 
Fig. 6 Experiment current of the custom working condition 

4.2 Experimental results and analysis 

Thevenin equivalent circuit model is established in the MATLAB software, 

the input signal for simulation experiment is current of the custom working 

condition. SOC obtained using Dual EKF [11] and the curve of maximum available 

capacity estimation is shown in Fig. 7.  

 
(a) is the relationship of terminal voltage prediction value and measurement value;  

(b) is the relationship of SOC estimation value and truth-value; 

 
(c) is the relationship of system parameter Q estimation value and truth-value.  

Fig.7 Simulation results of Dual EKF. 

C
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The curve of NCA/C spaceborne lithium battery SOC and maximum 

available capacity prediction obtained using multi time-scale EKF algorithm is 

shown Fig. 8. 

 

(a) is the relationship of terminal voltage prediction value and measurement value; 

(b) is the relationship of SOC estimation value and truth-value; 

 
(c) is the relationship of system parameter Q estimation value and truth-value. 

Fig.8 Estimation results of multi time-scale EKF algorithm. 

In terms of maximum available capacity estimation, the initial values we set 

are both less than the true values in the two methods, as shown in Fig. 7 (c) and Fig. 

8(c). From Fig. 7 (c), it can be known that estimation of the maximum available 

capacity failed to closely track the real maximum available capacity; eventually, the 

estimated value converged in about 4.3% error range and includes larger noise. In 

Fig. 8(c), the estimated value is converged to the true maximum available capacity 

gradually as the simulation steps increases. The accuracy of Dual EKF is low due 

to measurement in SOC and maximum available capacity estimation and time scale 

coupling. As shown in Eq. (28), for modifying the prediction value of maximum 

available capacity, Dual EKF uses terminal voltage of the battery as the 

measurement value to modify it. 

                                
(28) 

The difference is that multi time-scale EKF algorithm makes estimation on 

maximum available capacity according to Eq. (29) and (30) on the macro scale. It 

avoids the terminal voltage of the battery is the only measurement for the parallel 

estimation process of SOC and the maximum available capacity. 

, , , , , ,
ˆ ˆ ˆ(y ( , ))k l k l k l k l k l k lK G x u − − −= + −
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(29) 

                                         
(30) 

Moreover, there is no direct relationship between the observations Eq.

 and the maximum available capacity. When we use observed quantity 

to update the maximum available capacity, it just relies on the measurement of 

White Gaussian Noise on the Kalman filter processing, with limited effect. 

Meanwhile, the state variable and the maximum available capacity 

have a direct connection. Using the state variable for parameters updating can 

produce more reliable maximum available capacity estimation value. 

Compare Fig. 7(a) and Fig. 8 (a), it is easy to see that simulation values of 

the terminal voltage with multi time-scale are more closely following the measured 

value change and contains less noise. The error of SOC estimation value in Fig. 8 

(a) is smaller than Fig. 7 (a). The dependency of SOC estimation on the maximum 

available capacity is larger; the deficiency of the maximum available capacity 

estimation accuracy would reduce the veracity of SOC estimation. Multi time-scale 

EKF algorithm provides a more accurate maximum available capacity estimation 

value and SOC estimation is more accurate. Multi time-scale EKF algorithm 

improves the prediction performance than Dual EKF to a certain extent. 

In addition, the two methods are also compared in computational efficiency, 

shown in table 2. In order to minimize the influence of randomness, the two 

methods are carried out 10 times, and then take average for comparison. The time 

of the average calculation is summarized in Table 2. 
Table 2.  

Computational efficiency contrast 

Algorithm Type computing time efficiency Improvement 

Dual EKF [11] 0.552 —— 

Multi time-scale EKF algorithm 0.522 5.43% 
 

It can be observed that multi time-scale EKF algorithm consumes less 

computation time than Dual EKF. This helps to reduce the burden of computation 

and the hardware in satellite fault prediction and health management (PHM) system, 

also improve the PHM system application flexibility and efficiency. 

5. Conclusion 

The multi time-scale EKF algorithm is an effective and accurate state and 

parameter estimation method for engineering systems with time-scale separation. 

In this paper, the multi time-scale EKF algorithm is used to predict the SOC of the 

satellite lithium battery on the microscopic scale, and the SOC estimation is used 

as the observation to forecast the maximum available electricity. The effect is better 

1, 0 1,0 1, 1
ˆˆ( , , )k L L k k L kx F x u  −

− → − − −=

1, 1,
ˆ ˆ ˆ[ ]k k k k L k LK x x  −

− −= + −

, ,
ˆ( , )k l k lG x u−

, , ,[    ]p T

k l k l k lx z U=



80                                        Qian-Qian Liu, Bing Chen, Jingyuan Zhang 

 

than the dual EKF estimation, and the calculation is improved effectiveness. The 

next step will be to establish a satellite lithium battery equivalent model and OCV 

and SOC relationship model, taking into account the impact of temperature on the 

SOC, the impact of electricity on the OCV, etc., to improve the accuracy of the 

model to obtain more accurate estimates. 
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