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ANALYTICALLY NON-CLASSIC DESIGN OF A 
PIEZOELECTRIC RESONATOR 

Massoud MALAKI1, Amir ABDULLAH2 

Nowadays, with regard to many different applications of piezoelectric high 
power ultrasonic transducers in many different fields of industries, the correct 
design of these tools is of crucial importance. In typical analytical methods, in the 
absence of energy loss assumption, using the equations of wave transmission, the 
dimensions of different parts of transducer consisting of backing and matching parts 
are being determined in a specific frequency. But with regard to high frequencies 
that ultrasonic transducers are working on (>20 kHz), the effect of energy loss can 
be dominant and this part of energy loss is converted to heat. In this paper, 
considering the damping parameter in the wave equation, differential equations of 
damped longitudinal displacement and stress have been obtained and with 
considering the boundary conditions and using separation of variable techniques, 
differential equations are solved. Present vibrational energy loss in all parts of 
ultrasonic transducer, the dimensional equations of all part of this tool have been 
presented. The obtained new analytical formulations are the functions of damping 
parameter and some other parameters, respectively, and by correct measurement of 
these values and parameters, the dimensions of different parts of the piezoelectric 
ultrasonic transducers can be determined very accurately and reliably.  

Keywords: High power ultrasonic transducers, damping, piezoelectric, wave 
transmission in solid material 

1. Introduction 

Nowadays, with regard to many different applications of piezoelectric high 
power ultrasonic transducers in many different fields of industries, the correct 
design of these tools is crucially important. Use of ultrasonic transducers for 
various applications of atomizers [1], ultrasonic cleaning [2], sonochemistry and 
sonoluminescence [3], medical ultrasounds [4], ultrasonic peening and welding 
devices [5], ultrasonic assisted forming [6], ultrasonic motor [7], ultrasonic 
lubrication [8] and ultrasonic nondestructive evaluations [9] etc. has long been a 
field of interest. In typical analytical methods, with the absence of energy loss 
assumption, using the equations of wave transmission, the dimensions of different 
parts of transducer consisting of backing and matching parts are being determined 
in a specific frequency. 
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Considering high frequencies that ultrasonic transducers are working on 
(>20 kHz), the effect of the energy loss can be dominant and this part of energy 
loss is converted to heat [10-15]. 

In classical or one-dimensional design procedure of ultrasonic transducers, 
based on wave transmission theory, the total length of transducer is equal to half-
length of wave [16-18]. It should be mentioned that the one dimensional 
formulation is only valid for thin rods with diameter<<λ/4. 

In this study, the transducer has a node and two anti-nodes along the 
transducer, which are solved by differential equation and consideration of 
boundary conditions (equality of displacement and force), then, the length of parts 
of the transducer has been determined [19-20]. 

 
Fig. 1. Piezoelectric ultrasonic transducer 

In this paper, unlike classical formulations, damping parameter has been 
considered in wave equation and by using imaginary algebraic and the separation 
of variables techniques, differential equations are solved and the relation of 
damped displacement has been extracted. 

According to the extracted relations and with considering boundary 
conditions, novel relations for determining the correct length of parts are obtained. 
New relations are the function of different parameters or material properties, for 
example, the module of elasticity, material density, sound speed and damping 
parameters. These parameters can be determined from the experimental 
measurements or standard tables. 

2. The differential equation of wave transmission 

The differential equation of wave transmission or longitudinal 
displacement is obtained based on the vibration of all parts of transducer and 
boundary conditions of which these elements vibrate. 

Relations of displacement in backing and matching are calculated from the 
vibration of damped free-free cylindrical rod, and according to the vibration of 
damped clamped-free cylindrical rod, the vibration equation of the two 
piezoelectric rings are calculated. In non-classical differential equations of 
transducer's element, viscous damping model has been used. 
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2.1. Used model for energy loss 

Viscous damping model as the energy loss model in solving differential 
equations of damped motion of wave in solid materials has been considered. 

Viscous damping model is one of the simplest models in structural 
analysis and vibration of damped systems [21]. In this model, free longitudinal 
vibration (as governing equation of its motion based on wave equation) has been 
seen and considering the viscous damping, the main damped differential equation 
is extracted.  

Figure 1 shows the cylindrical rod that the length of which equals nλ/2 and 
vibrates in one of the resonance vibrational modes. Figure 1 exhibits one of the 
vibrating elements, all forces and stresses of which are shown on this schematic 
figure. According to the damped longitudinal vibration of this rod, the differential 
equation of this type of vibration can be calculated as follows [21-23]: 
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Where U is the particle displacement, t is the time, x is a coordinate, c is 
the infinite sound speed in bar, δ is the energy loss factor in unit mass (equivalent 
viscous damping coefficient). 

 
Fig. 2. Damped vibration of cylindrical rod in the resonance condition with viscous 

damping as energy loss model 

3. Cylindrical ultrasonic transducer design 

Considering figure (1) and the location of node between two contact 
surfaces of piezoelectric, transducer's set would be divided to the symmetrical 
parts. The first part is composed of backing and upper piezoelectric and the 
second part is composed of matching and the beneath piezoelectric. 

With the given length of piezoelectric ring, only matching length and 
backing length are left for calculation. The design of the first and the second half 
of transducer is completely similar, so in this paper, the design of one half 
(backing and piezoelectric) has been presented. 

Between steel backing and piezoelectric, the values of displacement and 
force of backing and piezoelectric are equal: 

PSt LxPLxst UU == = (2) 
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PSt LxPPLxstSt AA == = σσ (3) 
A is the cross-sectional area, σ is the stress, L is the length. Subscripts St 

and P are steel backing and piezoelectric, respectively. 

3.1. The displacement equation of steel backing 

The differential equation of displacement of steel backing is the base for 
equation (1) and using the separation of variable techniques, the longitudinal 
damped displacement equation has been assumed as follow: 

U(x,t)=f(x)g(t) (4)
Introducing equation 4 into equation 1 and separating the variables, it 

follows: 
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Adding and subtracting the term of )()(2 tgxfk is for separating the 
variables as shown above [15]. More to the point, k is a constant as follows: 

Where α  and ω  are constant and the values of these constants will be 
determined considering the boundary conditions. Let us solve the temporal 
equations (7) and the space equation (8) using the traditional method. After all the 
calculations, this equation can be presented as: 
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A, B, C and D are constant. These constants will be determined by 
applying boundary and initial conditions. The space-time solution U(x, t) is then: 
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According to the resonance condition in backing part, appropriate 
boundary condition for steel backing is [21]: 
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Fig. 3. Location of nodes and anti-nodes 

Applying these boundary conditions to the solution (10) yields: 
0≠= DC (13)
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Let us consider a complex k in equation (15): 
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Equation (16) becomes: 
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With simplifying equation (17): 
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Separating the real and imaginary parts: 
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According to non-trivial solution, constants α  and ω  can be obtained as 

follow: 
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So, the relation between damped natural frequency nΩ  and non-damped 
natural frequency nω  can be given as: 
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It is the damped normal angular frequency as opposed to the non-damped 
normal angular frequency nω  which characterizes the vibrations when δ= 0 and 
equation (1) is reduced to the standard wave equation. In this relation, nωδξ 2/=  
is the damping ratio. Grouping all these results, the solution of space (11) is 
particularized for the mode shapes )(xfn  defined for each n mode: 
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The temporal response of n mode, )(tgn  can also be expressed in the form 
of the following: 
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It necessarily follows those two initial conditions for backing part as 

follows: 
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)()0,( xDxU =  is the initial displacement and )0,(t xU ∂∂  is the initial 
velocity. By assuming nnnnnn CBBCAA 2 ,2 =′=′ , it follows that: 
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To determine the constants nA′  and nB ′ , it is enough to use the properties 
of orthogonality, which amounts to breaking up the initial displacements and 
speed into a Fourier series of cosine and to identify them term by term. Equations 
(26) and (27) yield, respectively: 
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According to equations (24), (28) and (29), the displacement equation of 
backing has been concluded as follows: 
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Figure 4 illustrates the time history of mode n represented in equation (30) 
which is a damped sinusoid representing a dissipation of energy during 
movement. 

 
Fig. 4. Time history of mode n 

Initial displacement of all points of backing part is as follows: 
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So, the displacement relation of backing part has been written as follows: 
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3.2. Displacement equation of piezoelectric 

Like all parts of ultrasonic transducer, the vibration of piezoelectric is 
longitudinal and the differential equation of wave transmission of this part is 
equation (1), too. 
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In t=0, the displacement of piezoelectric is as follows: 
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To introduce boundary and initial conditions into the differential equation 
of piezoelectric for extracting the piezoelectric displacement, the following 
equation would be: 
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3.3. Stress relations in components of ultrasonic transducer 

According to high frequency that any ultrasonic transducer works on, also 
very quick variations of strain, better and precision relation for stress in all parts 
of transducer can be written as follows [22, 23]: 

εδεσ ′+= Y (38)
Where σ is stress, Y is the module of elasticity, ε  is strain, ε  is the rate of 

strain and δ ′  is viscous damping coefficient per mass unit. Equation (38) is only 
applicable for the metallic materials and for piezoelectric materials; stress relation 
is different; therefore, with regard to the piezoelectricity properties, the stress 
relation of piezoelectric is as follows [13, 15]: 
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Where 33ε  is the piezoelectric axial strain, Es33  is the compliance matrix 
under a constant electric field and 33d  is the piezoelectric constant, thus [13, 15]: 

)( 333333 EdY E −= εσ (40)
Where 33ε  is equal to strain caused by mechanical force and an electric 

field 3333 Ed−ε  is the strain caused by only mechanical force and σ is the 
piezoelectric stress. In vibrating piezoelectric in the case of open circuit, stress is 
as [13, 15]: 

3333εσ DY= (41)
DY33  is young modulus under open circuit conditions. 

If piezoelectric is connected to a constant voltage source (For example 
short circuit) and this condition is vibrating, the stress relation of piezoelectric 
will be as: 

3333εσ EY= (42)
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EY33 is young modulus under short circuit conditions [13, 15]. 
By viscous damping assumption as the energy loss model of piezoelectric, 

in the open circuit conditions, the relation of the stress will be written as: 
33333333333333 )()( εδεεδεσ p

E
p

D EdYY ′+−=′+= (43)
And in short circuit conditions, the relation of stress will be written as: 

)( 333333 εδεσ p
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3.4. Stress relation for backing part of transducer 

According to equation (33), the displacement relation of backing part can 
be written as: 
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According to equation (45), the value of stress in backing part between 
piezoelectric and backing parts can be concluded as: 
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2μ  have been used only for the simplicity in the equations of (45) 
and (46), thus: 
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3.5. Stress relation for piezoelectric part of transducer 

According to the equation (37), the displacement of piezoelectric is as 
follows: 
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According to the equation (49), the force relation of piezoelectric between 
piezoelectric and backing can be written as follows: 
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p
1μ   and p

2μ   have been used only for the simplicity in the equations (45) 
and (46), thus: 

nP
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Between the piezoelectric surface and the backing surface, the amplitude 
of displacement and force are equal. 
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If nnPnSt Ω=Ω=Ω  the final equation of backing length part will be as 
follow: 
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Value of δ  can be obtained from equation (55). 

nξωδ 2=  
(

55)
Value of δ ′ can be obtained from the reference to [23]. 

YYn δξωδ ==′ 2 (56)
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According to the equation (54), it can be clearly seen that when damping 
value of parts is ignored, extracted relations can be reduced to non-damped 
classical formulations. Because the classical formulation is the base of this paper, 
and also the relations presented in the paper are logically mathematical 
formulations, and moreover the classical formulations cab be achieved by 
omitting damping in the given relations, this itself can be described as a proof for 
the mathematics given in this study. 

The design and determination of matching length of ultrasonic transducer 
(LAl : Aluminum matching length) is absolutely similar to determining the 
backing length of transducer and the final relation of this part of transducer will be 
obtained as follows: 
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In these relations, different parameters as sound speed, material density, 
module of elasticity and damping parameters can be extracted from the standard 
table or can be measured through the experimental investigations. 

4. Conclusions 

In this paper with regard to the principles and techniques of mathematics 
in vibration of continuous systems, differential equation of damped longitudinal 
rod has been proved and obtained, and according to the separation of variable 
techniques and complex algebraic methods and also by using appropriate 
boundary conditions, the differential equation has been obtained and solved 
analytically. Thus, considering these relations, analytically design of different 
parts of transducer such as backing and matching parts is done. Designing 
relations are the functions of physical and mechanical properties of the materials 
used in ultrasonic transducers and damping coefficients, too. These novel design 
and producer would lead to accurate determination of all parts' lengths than 
analytically classical producer. 
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