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ANALYTICALLY NON-CLASSIC DESIGN OF A
PIEZOELECTRIC RESONATOR

Massoud MALAKI', Amir ABDULLAH?

Nowadays, with regard to many different applications of piezoelectric high
power ultrasonic transducers in many different fields of industries, the correct
design of these tools is of crucial importance. In typical analytical methods, in the
absence of energy loss assumption, using the equations of wave transmission, the
dimensions of different parts of transducer consisting of backing and matching parts
are being determined in a specific frequency. But with regard to high frequencies
that ultrasonic transducers are working on (>20 kHz), the effect of energy loss can
be dominant and this part of energy loss is converted to heat. In this paper,
considering the damping parameter in the wave equation, differential equations of
damped longitudinal displacement and stress have been obtained and with
considering the boundary conditions and using separation of variable techniques,
differential equations are solved. Present vibrational energy loss in all parts of
ultrasonic transducer, the dimensional equations of all part of this tool have been
presented. The obtained new analytical formulations are the functions of damping
parameter and some other parameters, respectively, and by correct measurement of
these values and parameters, the dimensions of different parts of the piezoelectric
ultrasonic transducers can be determined very accurately and reliably.

Keywords: High power ultrasonic transducers, damping, piezoelectric, wave
transmission in solid material

1. Introduction

Nowadays, with regard to many different applications of piezoelectric high
power ultrasonic transducers in many different fields of industries, the correct
design of these tools is crucially important. Use of ultrasonic transducers for
various applications of atomizers [1], ultrasonic cleaning [2], sonochemistry and
sonoluminescence [3], medical ultrasounds [4], ultrasonic peening and welding
devices [5], ultrasonic assisted forming [6], ultrasonic motor [7], ultrasonic
lubrication [8] and ultrasonic nondestructive evaluations [9] etc. has long been a
field of interest. In typical analytical methods, with the absence of energy loss
assumption, using the equations of wave transmission, the dimensions of different
parts of transducer consisting of backing and matching parts are being determined
in a specific frequency.
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Considering high frequencies that ultrasonic transducers are working on
(>20 kHz), the effect of the energy loss can be dominant and this part of energy
loss is converted to heat [10-15].

In classical or one-dimensional design procedure of ultrasonic transducers,
based on wave transmission theory, the total length of transducer is equal to half-
length of wave [16-18]. It should be mentioned that the one dimensional
formulation is only valid for thin rods with diameter<<\/4.

In this study, the transducer has a node and two anti-nodes along the
transducer, which are solved by differential equation and consideration of
boundary conditions (equality of displacement and force), then, the length of parts
of the transducer has been determined [19-20].
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Fig. 1. Piezoelectric ultrasonic transducer

In this paper, unlike classical formulations, damping parameter has been
considered in wave equation and by using imaginary algebraic and the separation
of variables techniques, differential equations are solved and the relation of
damped displacement has been extracted.

According to the extracted relations and with considering boundary
conditions, novel relations for determining the correct length of parts are obtained.
New relations are the function of different parameters or material properties, for
example, the module of elasticity, material density, sound speed and damping
parameters. These parameters can be determined from the experimental
measurements or standard tables.

2. The differential equation of wave transmission

The differential equation of wave transmission or longitudinal
displacement is obtained based on the vibration of all parts of transducer and
boundary conditions of which these elements vibrate.

Relations of displacement in backing and matching are calculated from the
vibration of damped free-free cylindrical rod, and according to the vibration of
damped clamped-free cylindrical rod, the vibration equation of the two
piezoelectric rings are calculated. In non-classical differential equations of
transducer's element, viscous damping model has been used.
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2.1. Used model for energy loss

Viscous damping model as the energy loss model in solving differential
equations of damped motion of wave in solid materials has been considered.

Viscous damping model is one of the simplest models in structural
analysis and vibration of damped systems [21]. In this model, free longitudinal
vibration (as governing equation of its motion based on wave equation) has been
seen and considering the viscous damping, the main damped differential equation
is extracted.

Figure 1 shows the cylindrical rod that the length of which equals nA/2 and
vibrates in one of the resonance vibrational modes. Figure 1 exhibits one of the
vibrating elements, all forces and stresses of which are shown on this schematic
figure. According to the damped longitudinal vibration of this rod, the differential
equation of this type of vibration can be calculated as follows [21-23]:
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Where U is the particle displacement, t is the time, x is a coordinate, ¢ is
the infinite sound speed in bar, ¢ is the energy loss factor in unit mass (equivalent
viscous damping coefficient).
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Fig. 2. Damped vibration of cylindrical rod in the resonance condition with viscous
damping as energy loss model

3. Cylindrical ultrasonic transducer design

Considering figure (1) and the location of node between two contact
surfaces of piezoelectric, transducer's set would be divided to the symmetrical
parts. The first part is composed of backing and upper piezoelectric and the
second part is composed of matching and the beneath piezoelectric.

With the given length of piezoelectric ring, only matching length and
backing length are left for calculation. The design of the first and the second half
of transducer is completely similar, so in this paper, the design of one half
(backing and piezoelectric) has been presented.

Between steel backing and piezoelectric, the values of displacement and
force of backing and piezoelectric are equal:

U st x=Lp (2)

x=Lg Up
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o5 Ay x=lg — Op As x=Lp 3)
A is the cross-sectional area, ¢ is the stress, L is the length. Subscripts St
and P are steel backing and piezoelectric, respectively.

3.1. The displacement equation of steel backing

The differential equation of displacement of steel backing is the base for
equation (1) and using the separation of variable techniques, the longitudinal
damped displacement equation has been assumed as follow:

U(x,0)=f(x)a(t) “4)

Introducing equation 4 into equation 1 and separating the variables, it
follows:

o020 4 a1 (0 90 g df S g0 -k f g =0 ()

0] g(”+5d%§”—k@(t)}g(t)[kzf(x)—czw}:o ©
d’g(t)  .dg(t)

pre +0 it -k’*g(t)=0 (7)

K f (-2 degX> ~0 ®)

Adding and subtracting the term of k*f(x)g(t)is for separating the

variables as shown above [15]. More to the point, k is a constant as follows:

Where o and @ are constant and the values of these constants will be
determined considering the boundary conditions. Let us solve the temporal
equations (7) and the space equation (8) using the traditional method. After all the
calculations, this equation can be presented as:

S 2 a2 ) 2 212
o) = Ae_gte[ 5744k /2)t N Be_gte[i 57 +4k /2} 9)
kx kx
f(x)=Ce® +De © (10)

A, B, C and D are constant. These constants will be determined by
applying boundary and initial conditions. The space-time solution U(x, t) is then:

_9 ( 62+4k2/2Jt _9 (- 52+4k2/2)t Lid kx
Uxt)y=| Ae *e +Be *e Cec +De © (11)

According to the resonance condition in backing part, appropriate
boundary condition for steel backing is [21]:

ouU ou
vt —(0,t)=0; —(L,t)=0 12
7 00 o &Y (12)
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Fig. 3. Location of nodes and anti-nodes

Applying these boundary conditions to the solution (10) yields:

C=D=0 (13)
L
e¢ —-e ¢ =0 (14)

Let us consider a complex k in equation (15):

Savio)  Clatjo)  ar ol .. ol
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Equation (16) becomes:
PR PP —
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With simplifying equation (17):

cos(w—Lj sinh(a—Lj + sin(w—Lj cosh(a—Lj =0 (17)
C C C c

Separating the real and imaginary parts:

cos(a)—l'j sinh(a—Lj =0, sin(w—Lj cosh(a—l_j =0 (18)
c c c ¢

k=a+ jo (19)
According to non-trivial solution, constants ¢ and @, can be obtained as
follow:

@=0.0=0, =" n=123 . 0=k, =" | (20)

So, the relation between damped natural frequency €, and non-damped
natural frequency @, can be given as:

Q, =+ —(5/2) =w,\1-& 21)
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It is the damped normal angular frequency as opposed to the non-damped
normal angular frequency @, which characterizes the vibrations when 6= 0 and

equation (1) is reduced to the standard wave equation. In this relation, £ =J/2am,

is the damping ratio. Grouping all these results, the solution of space (11) is
particularized for the mode shapes f (x) defined for each n mode:

f (x)=2C, cos(% xj =2C, cos(& xj (22)
c
The temporal response of n mode, ¢, (t) can also be expressed in the form
of the following:

g,(t)= efft [Aneant n Bne*iQnt] (23)
Thus:
U= f,009,1) (24)

It necessarily follows those two initial conditions for backing part as
follows:

U(x,0)=D(x) ; 0U/ot(x,0)=0 (25)
U (x,0) = D(x) is the initial displacement and 0U /ot (x,0) is the initial
velocity. By assuming A’ =2A C,, B, =2B,C, , it follows that:

n*=n>

Ux0)=3" (A+ B;)Cos(”T” x) — D(x) (26)

ou N P nz )
E(X,O) = Zn=1|: J(Ah - Bn )Qn _E(Ah + Bn )} x COS(T X) =0 (27)

To determine the constants A, and B, it is enough to use the properties

of orthogonality, which amounts to breaking up the initial displacements and
speed into a Fourier series of cosine and to identify them term by term. Equations
(26) and (27) yield, respectively:

. )
1Q, + L nor
A: = JQ—Lz-‘. D(X) COS(T X)dX (28)
n= %
an _g L nrz
B =— > o cos(T xjdx (29)
J82,L

According to equations (24), (28) and (29), the displacement equation of
backing has been concluded as follows:
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= 2% Tnz 2D(x) ) nz
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Figure 4 illustrates the time history of mode n represented in equation (30)
which is a damped sinusoid representing a dissipation of energy during
movement.

Fig. 4. Time history of mode n
Initial displacement of all points of backing part is as follows:

D(X) =, cos(% xj 31)

So, the displacement relation of backing part has been written as follows:

) L
e_Et £J.cos(£ Xj cos(Z dex X
" L L L
uxn=3
[cos(Qnt) + o sin(Qn'[)}COS[z X)
2Q L

n

(32)

*gt o . T
Uxt)y=ue {cos(Qnt) + Esm(Qnt)}Cos[t XJ (33)

n

3.2. Displacement equation of piezoelectric

Like all parts of ultrasonic transducer, the vibration of piezoelectric is
longitudinal and the differential equation of wave transmission of this part is
equation (1), too.

vt ; U0,t)=0 ; %J(L,t):o (34)
In t=0, the displacement of piezoelectric is as follows:

L (7
D(x)=u! s1n[i X) (3%5)

30)
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To introduce boundary and initial conditions into the differential equation
of piezoelectric for extracting the piezoelectric displacement, the following

equation would be:
—gt 2UOL.[7Z' j[ﬂ' j
e —J.sm —X [sin| — X [dX p x
L s 2L 2L

[cos(Qnt)Jr%sin(Qnt)}Cos(i x]

n

U= (36)

-4 o Vs
e 2 0 . (7
U(x,t)=ule {cos(Qnt)szQ sm(Qnt)}sm(zL Xj (37)

n

3.3. Stress relations in components of ultrasonic transducer

According to high frequency that any ultrasonic transducer works on, also
very quick variations of strain, better and precision relation for stress in all parts
of transducer can be written as follows [22, 23]:

oc=Ye+0€ (38)

Where g is stress, Y is the module of elasticity, ¢ is strain, ¢ is the rate of
strain and &' is viscous damping coefficient per mass unit. Equation (38) is only
applicable for the metallic materials and for piezoelectric materials; stress relation
is different; therefore, with regard to the piezoelectricity properties, the stress
relation of piezoelectric is as follows [13, 15]:

&, d
o=f+ PE (39)
833 S33

Where &, is the piezoelectric axial strain, S, is the compliance matrix

under a constant electric field and d.; is the piezoelectric constant, thus [13, 15]:
o =Yg (&, — Edyy) (40)

Where ¢;,,. is equal to strain caused by mechanical force and an electric

field &,; —Ed,, is the strain caused by only mechanical force and o is the

piezoelectric stress. In vibrating piezoelectric in the case of open circuit, stress is
as [13, 15]:
o =Y58;, (41)
Y., is young modulus under open circuit conditions.
If piezoelectric is connected to a constant voltage source (For example

short circuit) and this condition is vibrating, the stress relation of piezoelectric
will be as:

o= Y3§533 (42)
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Y is young modulus under short circuit conditions [13, 15].

By viscous damping assumption as the energy loss model of piezoelectric,
in the open circuit conditions, the relation of the stress will be written as:

o =Y3I33(‘933 +5;é33) :ng (&35 — Ed33)+5;é33 (43)
And in short circuit conditions, the relation of stress will be written as:
o =Y; (&5 +6,3;) (44)

3.4. Stress relation for backing part of transducer

According to equation (33), the displacement relation of backing part can
be written as:

st st

u st st

Ul ., = St cos Dyt Ly | - _/uz eit 4 _,ul phat (45)
* 2 Cq 1Q . JQ s

According to equation (45), the value of stress in backing part between
piezoelectric and backing parts can be concluded as:

_ ﬂzStYst_ + 5y eMt |
x=Lg —A YU ;’(r:]sx Sin(% LStJ sty JYStsgtanSttéw (46)
st st Hi Ya U By Og pHat
jYSthSt
4t and 215" have been used only for the simplicity in the equations of (45)
and (46), thus:

O-St Ast

1) .

MSI = _TSt + Qg 47)
O, .

,U25t = _Tt = 1Qs (48)

3.5. Stress relation for piezoelectric part of transducer

According to the equation (37), the displacement of piezoelectric is as

follows:
u (4] /,[P P /lp P
U _ = ;Psin —ZnP_ L _ 2 e/’] t + 1 e/’zt 4
Plx=Lp > [Cp PJ{ i —anP (49)

According to the equation (49), the force relation of piezoelectric between

piezoelectric and backing can be written as follows:
P or

_ ,U2PY33 +,U2P,U1 P it 4
jiY..Q2
Ophal i, = AYplp Dre_ 5| Lop L [x| . 33P nz , (50)
2Cp Cp My sy + 1y ) Op et
Y5 Qp
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4° and g7 have been used only for the simplicity in the equations (45)
and (46), thus:

p 5[] H
H=—t 12, (51)
o, .
/'IZP Z_TP_ JQnP (52)

Between the piezoelectric surface and the backing surface, the amplitude
of displacement and force are equal.

2
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If Q4 =Q,=CQ, the final equation of backing length part will be as

follow:

2
APY33CSt Qﬁ +(52"3)
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Value of J, can be obtained from equation (55).
0=2%w,

55)
Value of &’ can be obtained from the reference to [23].
0'=2lwY = oY (56)
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According to the equation (54), it can be clearly seen that when damping
value of parts is ignored, extracted relations can be reduced to non-damped
classical formulations. Because the classical formulation is the base of this paper,
and also the relations presented in the paper are logically mathematical
formulations, and moreover the classical formulations cab be achieved by
omitting damping in the given relations, this itself can be described as a proof for
the mathematics given in this study.

The design and determination of matching length of ultrasonic transducer
(Lar : Aluminum matching length) is absolutely similar to determining the
backing length of transducer and the final relation of this part of transducer will be

obtained as follows:
5 2
APY33CAI Qﬁ +(;}

2
AyYaCo [ +(§;j

X

LA,=4444l5ﬂ44437Arcuu1 2 .
0 4| %n @,@—ng{fq
" 2 Yi 2 1
X
r 2 2
S| Oy 2% Qﬁ+(5’“j ta L Qﬁ+(5pj
Y, 2 . 2

In these relations, different parameters as sound speed, material density,
module of elasticity and damping parameters can be extracted from the standard
table or can be measured through the experimental investigations.

4. Conclusions

In this paper with regard to the principles and techniques of mathematics
in vibration of continuous systems, differential equation of damped longitudinal
rod has been proved and obtained, and according to the separation of variable
techniques and complex algebraic methods and also by using appropriate
boundary conditions, the differential equation has been obtained and solved
analytically. Thus, considering these relations, analytically design of different
parts of transducer such as backing and matching parts is done. Designing
relations are the functions of physical and mechanical properties of the materials
used in ultrasonic transducers and damping coefficients, too. These novel design
and producer would lead to accurate determination of all parts' lengths than
analytically classical producer.
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