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Previous works on Parkinson's disease (PD) mainly focused on genes 

differentially expressed between the anterior and the posterior sections of the brains 

of a normal mouse and the one with PD. However, no work has been done in finding 

a hierarchical pattern of gene expression between the different regions of a brain. 

Such a hierarchy is useful to locate genetic specializations within a normal brain, 

thus in analyzing how brain infirmities affect these specializations. We use a 

recently proposed method of robust hierarchical clustering using arithmetic-
harmonic cut to construct the hierarchical relation between different regions of the 

brain. Then, we show how similar regions of the normal and PD brain differ in gene 

expressions, indicating a functional variation due to Parkinson's disease in a few 

high-level clusters of brain regions. 

Keywords: Parkinson’s disease, gene expression, combinatorial optimization, 

unsupervised clustering. 

 

1. Introduction 

 

Many countries are increasingly witnessing the effect of Parkinson's 

disease (PD) in a majority of their old population. It is a progressive 

neurodegenerative disease characterized by continual tremors, rigidity of the 

limbs, slowness of movement and difficulty with balance and coordination. Works 

from literature like [1] targeted mice for finding the genetic markers of PD. They 

created PD model by administration of toxic doses of methamphetamine (MA) to 

C57BL/6J mice [1]. At the doses used by [1], the mouse model of PD has been 

reported to have substantial loss (45%) tyrosine hydroxilase-positive 
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dopaminergic cells in the substantia nigra (a part in the brain), as well as 

destruction of dopaminergic nerve terminals in the neostriatum.  

We consider the microarray data provided by [1]. This data consists of 9, 

000 genes and 80 experiments (40 experiments from the normal and 40 

experiments from the MA-treated mouse). In fact, brains from both normal and 

MA-treated mice were divided into 40 voxels (cubic 3D image elements) by 

slicing each brain into 10 coronal sections and cutting each slice again into four 

voxels. The work of [1] reports that both normal and PD brains have striking 

lateral symmetry, i.e., both brains have similar expression in their left and right 

halves. Furthermore, they compared left (right) brain of the PD mouse with the 

left (right) brain of the normal one and found that there is a significant difference 

in expression between the genes repressed or induced in the MA brain. 

However, the work in [1] mainly considers genes which distinguishes 

between the whole anterior (20 voxels) part from the posterior part (20 voxels) of 

the normal and the MA brains. This motivated us to concentrate on identifying 

parts of the normal brain which are genetically similar (with respect to the 

expressions of the genes) and analyze if they are also functionally similar. In this 

paper, we employ a recent combinatorial optimization based hierarchical 

clustering method [33] on the voxels of the normal brain. Notice that the use of 

this clustering algorithm over popular methods like agglomerative hierarchical 

clustering, k-means, etc for this purpose is motivated by the success of [33]'s 

clustering results on diverse datasets like the dataset of 84 Indo-European 

languages [35], National Cancer Institute's microarray data of 64 cancer cell-lines 

[36], etc. Then, we find the genetic signatures for such partitions of the normal 

brain, i.e., we select the genes which are differentially expressed in the two sides 

of each node of the tree. The strongly contrasting expressions of a huge number of 

genes in the first few partitions lead us to infer that such unsupervised partitioning 

really cluster regions of the brains which are genetically similar. Furthermore, this 

allows us to analyze how the genes in these signatures are affected in the similar 

voxels of the MA-treated mouse brain. This approach seems to be very logical in 

the sense that brain activity may not always depend on spatially co-located 

regions in the brain. To see deeper, we compare three significant clusters of 

voxels from the normal and the PD brain and show the genes which make these 

regions different in the two brains. One of the regions includes all voxels from the 

rostral cerebellum, a few from septo-striatum and diencephalon. 

 

2. Methods 

 

Our approach consists of employing a recently developed combinatorial 

optimization based method for hierarchical clustering to find a hierarchical 

structure within the 40 voxels normal mouse's brain. Then in order to explore the 
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relations that arise within the hierarchical tree structure, we use a statistical 

approach that selects genes supporting the hierarchy of the samples in the normal 

brain. 
 

 

 
 

 

This is illustrated using Fig. 1. In Fig. 1A, we show an example of hierarchical 

clustering of 4 sets of samples, given by {SamplesA, SamplesB, SamplesC, 

SamplesD}. We call the union of these sets as Node0. Similarly, Node1 (Node2 

resp.) denotes the union of the sets SamplesA and SamplesB (SamplesC and 

SamplesD resp.). Finally, Node3, Node4, Node5 and Node6 refer to SamplesA, 

SamplesB, SampleC and SamplesD, respectively. Now we proceed to select 

relevant genes distinguishing the siblings in the tree. Fig. 1B shows genes that 

"explain" the division of Node0 into Node1 and Node2. We repeat this procedure 

over the new sets created. Thus Fig. 1C (Fig. 1D) shows the genes distinguishing 

between the sets Node3 and Node4 (Node5 and Node6 resp.). We stop when we 

cannot find significant evidences within the data set to continue with this 

procedure, or if there are too few samples to evaluate the quality of the results. 

This analysis gathers the information characterizing each group of samples 

(SamplesA, SamplesB, SamplesC and SamplesD). Also, at the nodes further from 

the leaves (say at Node0), it tells us which genes have similar expressions in 

Fig.  1  Example of the hierarchical genetic signature of a classification tree. (A) An example of 

hierarchical clustering of 4 sets of samples, given by SamplesA, SamplesB, SamplesC, and SamplesD. 

(B) Genes that explain the division of Node0 into Node1 and Node2. (C) Shows the genes 

distinguishing between the sets Node3 and Node4. (D) Shows the genes distinguishing between the sets 

Node5 and Node6. 
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SamplesA and SamplesB (which are clustered together in Node1), while having 

an altogether different expressions in both SamplesC and SamplesD (which are 

together in a different partition, namely Node2). The data at each of the non-leaf 

nodes can be visualized as in Figs. 1B, C and D.  

This methodology requires reliable cluster approaches and competent gene 

selection method. In Mahata et al. (2006) [33] one novel approach for the 

clustering was designed and tested using the Indo-European languages data set 

and NCI60 cancer data set. The above paper shows the robustness of the 

clustering method used here, when compared with other clustering methods 

previously reported in the literature and applied to the same data sets. In applying 

the algorithm, we follow the following steps:  
 

 The algorithm used in this paper poses the clustering problem as a graph 

optimization problem. It uses a novel objective function that performs very 

well in diverse types of datasets.  

 It starts with forming a distance matrix for a set of objects and computes a 

weighted graph in which vertices represent objects and edges are weighted 

by the distance between the corresponding vertices.  

 Then the objective function tries to obtain a solution whose fitness is 

maximal and proportional to the sum of the weights on the edges between 

two sets of vertices, and to the sum of the reciprocals of the weights on the 

edges inside the sets. This is denoted as arithmetic-harmonic cut.  

 The recursive application of such cuts generates a tree-based classification 

of the data.  
 

While the primary concern was the classification of microarray data, the 

algorithm was also tested under two different datasets: (a) a dataset for 84 Indo-

European languages, and (b) a dataset for 60 cancerous cell-lines (NCI60) to 

explain the robustness of the approach and validating it in different domains [33]. 

The detailed clustering approach is explained below. 

 

2.1. Combinatorial Optimization based Unsupervised Hierarchical 

Clustering Method 

 

We apply an unsupervised hierarchical clustering method to establish the 

hierarchical pattern of gene expression within the voxel scheme of a normal 

mouse's brain (gene expression data of 40 voxels from [1]). In Mahata et al. 

(2006) [33] one novel approach for the clustering was designed and tested using 

the Indo-European languages data set and NCI60 cancer data set. The above paper 

shows the robustness of the clustering method used here, when compared with 

other clustering methods previously reported in the literature and applied to the 

same data sets. In case of Indo-European languages, there are historical and 
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archeological evidences, which provide good expectation about the correct 

solution and more importantly it was easier to detect gross and medium size error. 

Again, in case of NCI 60 dataset, the labels of different samples were known a 

priori. 

 

The method of [30] for bi-partitioning the vertices of a given graph, 

maximizing a given objective function (Equation 1) to yield maximum inter-

cluster dissimilarity and minimum intra-cluster dissimilarity is called Arithmetic-

Harmonic Cut. They use this method within a top-down procedure, which 

recursively bi-partitions the samples in the dataset. In the dataset under 

consideration in this paper, we stop bi-partitioning when we cannot find 

significant evidences within the data set to continue with this procedure (the 

expression levels of the two partitions are not having high contrast), or if there are 

too few samples to evaluate the quality of the results. 

Formally, we create a complete, weighted graph G(E, V, W) without self-

loops where V is the set of vertices (corresponding to the voxels in our case). The 

weight of any edge e is a positive integer number (i.e. w(e) > 0) representing the 

distance or some measure of dissimilarity between a pair of vertices. In this case 

the weight of an edge (i, j) between the vertices i, j is given by the Pearson 

correlation based distance. 

We consider that any partition of the set V of voxels into two non-empty 

subsets S and V \ S also generates a partition of the set E of edges in two sets Ein 

and Eout. The set Eout   E is the subset of edges that link two vertices of different 

sets, i.e., a vertex in S and a vertex in V \ S. Similarly, Ein = E \ Eout is the set of 

edges connecting vertices within the same subset of voxels. The partition of our 

interest is defined as the one that maximizes the following objective function 
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It turns out that solving the above optimization problem algorithmically is 

APX-hard [27]. Thus, we use a meta-heuristic, so-called, memetic algorithm for 

solving AH-Cut. Memetic algorithms provide a population-based approach for 

heuristic search in optimization problems. Basically, they combine local search 

heuristics with crossover operators used in Genetic Algorithms [24]. The essence 

of our algorithm is similar to the work of Merz and Freisleben in [28] for Graph 

Bi-partitioning. The difference in our algorithm from that of [28] arises from the 

fact that we need to remove the constraint of equal partitioning of the graph. The 

method consists of three main procedures: (a) a differential greedy algorithm (a 

modification of the algorithm in [29]) for initialization of a set of solutions for 

AH-Cut, (b) a differential greedy crossover (a modification of the algorithm in 
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[28]) for evolution of the population, and (c) a variable neighbourhood local 

search (see [30]) to improve the newly generated solutions. 

First of all, we use a ternary tree for population as in [25] and keep two 

solutions at each node of this tree. One solution is the best obtained so far at the 

node, called pocket solution and the other one is the current solution. Essentially, 

if we generate a current solution by recombination or local search which is better 

than the pocket solution, we swap this current solution with the pocket solution. 

Furthermore, each parent node of the tree must have better pocket solution than its 

children's pocket solution. Similar tree structures were previously advocated 

successfully in various combinatorially hard problems (e.g., see [31, 25, 32, 34]). 

First we initialize the population by using a variant of the differential 

greedy algorithm used in [29] for the GRAPH BI-PARTITIONING problem. This 

scheme has a bottom-up approach. It first randomly chooses two vertices v, v′ 

from the set V and puts one in S and the other in S . For each of the remaining 

vertices u in V: = V \ {v, v′}, we compute the sum of the weights from the vertex 

to the set S and S and call this distance dist (S, u) and dist ( S , u) respectively. 

These vertices are then sorted in an increasing order according to the metric dist 

( S , u) – dist (S, u) in list L. Unless the set V is empty, we choose whether a vertex 

will be inserted in set S or in S by tossing a coin. If the chosen set is S, we pop a 

vertex u from the bottom of the list L and update S: = S }{u . We also update the 

list of remaining vertices according to the function dist and the current S and S . 

Also, we update the set V: = V \ {u}. The case for including a vertex in the set 

S is similar, where a vertex u is popped from the top of the list L. 

After initializing, we keep on doing the following unless there are no more 

changes in the best solution. We randomly choose a parent and a child solution 

from the ternary tree and crossover the parent's pocket solution with one of its 

child's current solution. All vertices that are contained in the same set for both the 

parents are included in the same set in the offspring. Then both sets are filled 

according to a differential greedy recombination method similar to that in the 

initialization. In this case, the starting set S ( S ) for the offspring is given by the 

intersection of the set S ( S resp.) from both the parents. This crossover method 

takes care of the diversity in the population. 

To better the quality of the obtained solution, we also employ the variable-

neighborhood search (VNS), first proposed by Hansen and Mladenovic [26] for 

the local search in the neighborhood of the new offspring. Contrary to other local 

search methods, VNS allows enlargement of the neighborhood structure along the 

search. 

Finally, whenever the population stagnates, we keep the best solution and 

re-initialize the rest of solutions in the set and run the above process again for 

certain number of generations (say, 30). 
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For the small sized problems (graphs containing less than 25 vertices), we 

used backtracking. Notice that even though backtracking gives us an optimal 

solution, a memetic algorithm may not. 

 

 

2. 2. Feature Selection 

The next step is to find the genetic signature for each non-leaf node of the 

hierarchical tree obtained from the above clustering method. This method is aimed 

to find the optimal set of genes which enforces inter-class discrimination and 

intra-class similarity.  

Given a set of voxels divided into two disjoint subsets S1 and S2, we 

define the function (often called target) t that maps voxel v  S1  S2 into the set 

{1; 2} such that t(v) = i if v  Si where i  {1; 2}. Briefly, t(v) gives the set to 

which v belongs. Now, the feature selection method is composed of two phases: 

Phase 1 - Minimum feature selection. In this phase, a linear integer model 

is built and solved to discover the minimum number of genes, k, that are necessary 

such that all pairs of voxels (i; j) from different sets (i.e. with t(i) ≠ t(j)) have at 

least α dichotomies. Also, all pairs of samples (i; z) from the same class (i.e., with 

t(i) = t(z)), have at least ß similarities. 

Phase 2 - Maximum cover gene selection. As there might be multiple 

solutions with k genes from phase 1, we construct and solve a new linear integer 

model to find the set of k genes that maximizes the contrast between different 

classes, and also maximizes the similarities within classes. To do this, phase 2 

keeps the (α, ß) constraints plus one extra constraint of k genes to ensure that we 

are looking only to the solutions obtained from phase 1. 

It is clear that to use this method, we need to define when a given gene g 

keeps similarities within one class or not. In this case, entropy is applied as in [3] 

over each gene in the data set.  

Basically, the Fayyad and Irani (1993) [3] method finds thresholds for a 

gene's expression, which best divide the distinct classes, according to a minimum 

description length criterion. As we are interested in dichotomies, a modified 

version of their algorithm was used to find only one threshold r [3].  

Therefore, a gene g makes a dichotomy between voxels i and j if and only 

if, the threshold r for gene g separates the expression value gi and gj, i.e.  

gi < r < gj or gj < r < gi 

(gi ≤ r ˄ gj > r) ˅(gi > r ˄ gj ≤ r)     (2) 

 

The above phases comprise optimization problems that are not likely to be 

fixed-parameter tractable as shown in [4]. However, the use of a standard integer-

programming formulation as in [37] in conjunction with an IP solver (ILOG 

CPLEX 9.1) enabled us to solve this problem to optimality. 
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3. Experiments 

 

We give a hierarchical classification tree for the normal brain based on the 

genes expressions using the above mentioned divisive hierarchical clustering 

method. The grouping obtained is confirmed by applying Principal Component 

Analysis (PCA) over the entire data set. We produce a set of genetic signatures 

based on the hierarchy obtained, which identifies each group, and also 

characterize their hierarchical relationship. The provided genetic signatures reveal 

the profile of similarities between some non-connected regions of the brain. The 

identified signatures for the hierarchical classification are further examined over a 

mouse brain with Parkinson's disease. We show that the genetic specializations in 

the normal brain, pointed by the signatures, change considerably in the specimen 

with Parkinson's disease. Furthermore, we compare the regions of the normal and 

diseased brains according to the hierarchy, and give genetic signatures that 

highlight significant changes due to the Parkinson's disease. In this work, we show 

how the known regions of the affected PD brain, i.e., cerebellum and striatum and 

the relatively unexplored regions are affected. The hypothesis is that the whole 

brain is slowly affected in PD. It is also highly likely that the effect observed in 

this model of PD is a result of chemically induced disease. 

 

4. Normal Brain 

4.1 Classification Tree of the Voxels  

The hierarchical clustering using the Arithmetic-Harmonic Cut (AHC) 

(described in Section 2.1) on the voxels from a normal mouse brain yields the 

classification tree shown in Fig. 2.  
 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig.  2  Hierarchical Classification for the normal mouse brain. After applying AHC on 

Node1, all voxels from section I are clustered together in Node4. 
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The first partition at Node0 of the tree (i.e. Node1 consists of voxels H1, 

C2, G3, E3, E1, C4, C3, I1, I3, I2 and I4). Amongst these, (I1, I2, I3 and I4) 

belong to the rostral cerebellum. The cerebellum is a very important structure in 

motor movement and motor-vestibular memory and learning. It is responsible for 

processing sensory information and providing coordinated, smooth movements of 

the skeletal muscular system. After the application of the AHC on Node 1, again 

we see that all voxels from the section I are clustered together in Node4 (see 

Figure 2). The voxels C2, C3, C4 in Node1 are from septo-striatum. Striatum is 

best known for its role in the planning and modulation of movement pathways. 

Both cerebellum and striatum are mentioned in the literature for affecting the 

brain of a MA-treated mouse. We also note that the slices E and G correspond to 

septo-diencephalon and caudal diencephalon respectively. The Thalamus in the 

diencephalon part is responsible for coordination and regulation of all functional 

activity of the cortex. Finally, the slice H corresponds to the caudal 

mesoencephalon region of the brain. 

Note that after unsupervised clustering of the voxels, even spatially 

disconnected voxels in the mouse brain are clustered together, depending on the 

similarity of their expressions. 

 

4.2. Genetic Signatures 

In Fig. 3a, we consider the genes which best distinguish between the 

voxels in Node1 and Node2, while keeping intra-cluster similarity. We employ 

(α,ß)-feature selection (See Section 2.2) for this purpose. Using α = 1,001, ß = 

881, we found 1,657 genes that give us the best signature for Node0, splitting 

Node1 from Node2.  

 

 

 

 

 

 

 
 

 

 

 

 

 

This signature shows that the voxels in Node1 have clearly distinguished  

 

 

Fig. 3 .Genetic Signatures for the normal mouse brain: (A) Signature at Node0 distinguishing the 

voxels in Node1 and Node2. (B) Signature at Node1 distinguishing the voxels in Node3 and Node4. 

(C) Signature at Node2 distinguishing the voxels in Node5 and Node6 
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This signature shows that the voxels in Node1 have clearly distinguished 

expression for all the genes selected. This is a clear marker of a normal brain and 

is also the evidence why the disconnected voxels like C3 and C4 voxels are 

together with the cerebellum ones (I1, I2, I3 and I4).  

Similarly, we consider the division at Node1 and Node2 in Fig. 3b and 

Fig. 3c respectively. We found 1,783 genes with α = 1,415; ß= 1,403 at Node1 

and 398 genes with α = 221, ß= 221 at Node2 respectively. The signature at 

Node1 is again very clear in distinguishing voxels from Node3 and Node4. Notice 

that voxels from the cerebellum are all in Node4. However, the signature at 

Node2 is rather homogeneous (very uniform, the voxels are not changing much). 

This means that the voxels in Node2 are not too dissimilar in terms of gene 

expression. Therefore, we did not divide Node2 further. If this group is splitted, 

no distinguishing signature can be observed to support further sub-classification. 

Same reasoning applies to Node3 and Node4.  

We use Wilcoxon-Mann-Whitney test to find the 50 best genes with 

lowest p-values from each of the above signatures of Node0 and Node1 and in 

Section 4.3, we describe our findings for the obtained genes. 

Principal Component Analysis 

Principal Component Analysis (PCA) reduces dimensionality while 

keeping the maximum possible variance of the original data. We performed an 

PCA analysis on the 7,035 genes for the normal brain and show the results in Fig. 

4. The green, blue and the red points turn out to belong to Node3, Node4 and 

Node2 of Fig. 2 respectively. Notice that the voxels of Node3 and Node2 are not 

fully separated. In Figs. 4 and 5, we show again that the PCA analysis on 1,657 

genes obtained by the feature selection at Node0 (shown in Fig. 3(A)). In this 

case, the clusters are much better separated. 

 

4.3. Genes 

 

First, we consider the 50 genes with best p-values from the signature at 

Node0 (shown in Fig. 3a). For all these genes, p-values are lower than 4 10
-6

. We 

discuss the known functions of some of the obtained genes in the following. The 

gene MRP111 is involved in protein biosynthesis. Now, it is known that the 

abnormal accumulation of substrates due to loss of Parkin function may be the 

cause of neurodegeneration in parkin-related Parkinsonism.  

In [14], p38 (a key structural component of the macromolecular 

aminoacyl-tRNA synthetase (ARS) complex involved in protein biosynthesis) was 

identified to be playing a role in the pathogenesis of PD. The p38 subunit of the 

aminoacyl-tRNA synthetase complex is a Parkin substrate, thus protein 
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biosynthesis and neurodegeneration are linked. Also, the genes STX7 and 

CSNK2A1 are found already in [6] to be in the Parkinson's disease pathway. 

Genes USP19, SENP5 and K1K12 are involved in Proteolysis. 

 

 

Fig. 4 PCA analysis on (a) total 7,035 genes.                Fig. 5 1,657 genes obtained by the feature   

                                                                                              selection at Node0 (shown in Fig. 3(A)) 
 

In [7], failure of ubiquitin-mediated proteolysis is suggested to be central 

in the pathogenesis of neurodegenerative disorders like Alzheimer's and 

Parkinson's diseases. The gene IKBKB has a biological function of protein 

phosphorylation using protein phosphate, which represents the final pathway in 

the action of transmitters and hormones at neuronal level [17]. Also, there is a 

clear link between protein phosphorylation and Parkinson's disease, since it 

regulates NMDA receptors, contributing to the pathogenesis of motor dysfunction 

in PD subjects [9]. The gene PAPSS2 is involved in amino acid biosynthesis. The 

study in [10] shows that the biosynthesis of amino acids reduces the metabolic 

activity of neurons in Parkinsonism. The genes HOXC5 and TIEG1 are involved 

in mRNA transcription regulation. A recent report [11] indicated that D1, a 

dopamine receptor (used in mRNA transcription regulation) changes after chronic 

levodopa (L-dopa) treatment, linking it with Parkinson's disease. Also, the gene 

TNC is involved in Neurogenesis [12] and is present in our signature. The gene 

NDUFA7 which belongs to the Alzheimer disease pathway [13] also plays a 

significant role in this partitioning of the normal brain. Then, the gene MllT2H is 

an oncogene involved in cell cycle regulation. There is a strong connection 

between cell cycle and neurodegenerative diseases, especially Alzheimer's [12]. 

However, MllT2H also seems to play a good role in separating Node1 from 

Node2. 

Similarly, we consider some of the 50 genes with best p-values (at most 7 

10
-3

), which distinguish between Node3 and Node4. It turns out that the genes 
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CMYA4 and SEPT4 are already known to be in the Parkinson disease pathway. 

The genes MRPS14, GSPT1 and RPS5 have functions in protein biosynthesis and 

are mentioned in [14] in relation to PD. We also found DDX50 in this signature, 

which is involved in nucleoside, nucleotide and nucleic acid metabolism. 

Interestingly, we found the gene TNFAIP8 in this signature. The gene TNFAIP8 

belongs to the Huntington's disease pathway, a CNS condition characterized by 

the damage of the nerve cells in the basal ganglia and cerebral cortex. This gene 

is also involved in the influence of altered expression of complexins in the 

modulation of neurotransmitter releases [15] and morphological variations of 

striatal medium spiny neurons [16]. The genes BIRC2, MTHFD1, STK11 were 

also selected and they are active in the apoptosis signaling pathway, amino acid 

biosynthesis [10], and protein phosphorylation [17][9] respectively and the three 

of them were previously related to PD. The gene RAP1A is part of the G-protein 

signaling pathway, which plays a variety of roles in numerous neuronal functions. 

Also, the interaction between G protein-coupled receptor kinases (GRKs) and ß-

arrestins regulates physiological responsiveness to psychostimulants, indicating a 

potential involvement in brain disorders, such as addiction, Parkinson's disease 

and schizophrenia [18]. The genes JMJD3 and MEF2B also take part in mRNA 

transcription regulation and are related to PD in [11]. Finally, the gene CATNA1 

appears in the signature which was found in Alzheimer disease pathway [13]. The 

signature at Node2 is not very distinctive in the sense that there are no major two 

groups present in the voxels at Node2. Therefore, the signature at Node2 of the 

normal brain is omitted here. 

 

5. Comparison between Normal and Parkinson Brain 

 

Next we compare the level of the expressions between the normal brain 

and MA-treated mouse brain for the genes in the signature at Node0, Node1 and 

Node2 of the normal brain. In Fig. 6a, we consider the genetic signature for 

Node0 of the normal brain and show their expressions at the corresponding voxels 

in the MA-treated mouse brain. The genes presented in the picture are in the same 

order as in Fig. 3. It is evident from this picture that the voxels in Node1 of the the 

MA-treated mouse brain turns out to have expressions very similar to those for 

voxels in Node2. This means that the genes which were differentially expressed in 

Node1 and Node2 of the normal brain, are now similarly expressed in the voxels 

at both nodes, yielding a rather homogenous signature. The same phenomenon is 

also present at the voxels in Node1 of the MA-treated mouse brain. The genes 

which are differentially in Node3 and Node4 have now similar expressions in the 

MA-treated brain. Also, notice that the voxels in Node2 of the MA-treated brain 

are also affected, even though to a smaller extent. The genes which were 

differentially expressed (even though weakly) in Node5 and Node6 (Node5 and 
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Node6 originate from Node2) have now a more homogenous expression in both 

nodes of the MA-treated brain. This may generate a hypothesize for Parkinson's 

disease, even though initial effects can only be observed in the cerebellum, it is 

probably that genetic affects over other parts of the brain can be measured before 

other phenotype changes appear. 

 

6. Genetic Signature for Node-wise Comparison of Normal and MA-

Treated Brains 

 

In the previous section, we showed that the expressions at different voxels 

of MA-treated brain tend to be very similar in contrast to those for a normal brain. 

Now, we seek a signature to find a small number of genes which are differentially 

expressed at each of the nodes Node1, Node2, Node3 and Node4 in the normal 

and MA-treated brain. This will allow us to look at each of the voxels in the 

corresponding nodes and pin-point genes which are affecting each of these nodes 

in PD. In Figs. 6a-d we show genetic signatures where the voxels of the normal 

brain at each of the nodes Node1, Node2, Node3 and Node4 are compared against 

those in the MA-treated brain respectively. In Figs. 6e and 6f, we also show the 

union of the genes present in Figs. 6a to 6d in the whole normal brain and in the 

whole MA-treated brain. 

For further functional analysis of the above nodewise comparison, we 

select a set of 50 genes with best p-values in the following for each of the above 

cases in Figs. 6a-d. For Node1, we show in Fig. 6 the expressions of 1,888 genes 

from feature selection with α = 1,223; ß = 1,223. We select 50 of the above genes 

with maximum p-value as 8  10
-11

. Similarly for Node2, we show 1,375 genes in 

Figs. 6(b) with α = ß= 664 and the maximum p-value of the selected 50 genes 

from this is 10
-8

. Also, for Node3 and Node4, we get 1,763 and 2,691 genes 

respectively. For Node3, α = 1,435; ß = 1,403 and the maximum p-value taken is 

10
-2

 and for Node4, we have α = 2,691; ß = 2,260 and the maximum p-value of 

the selected genes is 4  10
-3

.  

In the following, we consider the voxels in the nodes Node1, Node2, 

Node3 and Node4 for the normal and the MA-treated brains. In each case, we 

indicate some of the important genes from the above sets of 50 genes which 

distinguish a node in the normal brain from that in the MA-treated brain. 
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Fig. 6. Comparing different partitions of the normal and the MA-treated mouse brain. Genetic 

signature distinguishing (a) Node1, (b) Node2, (c) Node3, (d) Node4 of both brains, union of all 
the aforementioned genes in (e) normal brain and (f) MA-treated brain 

 

6.1. Genes: Node1 

 

We list down the genes which were significantly differentially expressed 

in the two sets of voxels (normal and PD) from Node1 and were mentioned in 

literature for their functions related to brain or in relation to some 

neurodegenerative diseases. We found the genes PINK1 [19] and CSNK2A1 [6], 

both of which are already mentioned in the literature to be PD-related. Notice that 

CSNK2A1 was already found to be different in Node1 and Node2. It seems that 

this gene expression in PD brain is more like that in Node2.We also found 

PPP1R9B which was also related to Schizophrenia [20]. This is very significant as 

it is widely accepted that neurodegenerative diseases in general share similar 

action mechanisms and also have genes in common. We also found GSK3B 

which is related to both Alzheimer's disease and Schizophrenia [13]. We obtained 

another gene, MTA2, which promotes the deacetylation of p53, modulating cell 

growth arrest and apoptosis. Recent studies have shown a relation between p53 

and brain degeneration [21]. The gene BC003885 is involved in Protein 

biosynthesis and is also reported in [14] for playing a role in PD. The genes 

PTPN9, CDK9 and PRPF4B are involved in Protein phosphorylation, as 
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mentioned in Section 4.3. The genes RGS5 and PRKAR1B are part of G-protein 

signaling pathway [18] and are found in this case. Again, USP19 which was 

distinguishing Node1 and Node2 of the normal brain appears in the comparison 

between the Node1 of the two brains. There were also two genes, PHGDH and 

CTBP1, which are known to be active in Amino acid biosynthesis and affecting 

PD [10]. Finally, the genes DDX21, SlC35C1 and RBM28 are involved in 

nucleoside, nucleotide and nucleic acid metabolism and considering their 

functions, they may be related to Parkinson's disease. 

 

6.2. Genes: Node2 

 

We already mentioned that even though in a smaller amount, the voxels in 

Node2 are also affected in the PD brain. Here we mention some of the few genes 

which we found in the 50-gene set. We found the genes MAPK6 and GSK3B, 

which also appear in Alzheimer's disease pathway and also have been linked to 

Schizophrenia [13]. Notice that the gene GSK3B also played an important role in 

distinguishing the normal brain's Node1 and Node2. The gene SNX27 is again 

related to G-protein signaling pathway and known to affect PD [18]. We also 

found a new gene SlC1A2 in Node2 comparison, which is in the ionotropic 

glutamate receptor pathway (iGluR). IGluRs are responsible for fast, reliable 

neurotransmission in the vertebrate central nervous system, being essential for 

learning and memory. There is also another gene MRPS25 which plays a role in 

protein biosynthesis and is related to PD [14]. The genes NCOR1, E2F7, GFI1B, 

and ZFP113 take part in mRNA transcription regulation and are linked to PD in 

[11]. We also found the gene CD1D1 has an intriguing function called T-cell 

mediated immunity. It has been known for many years that there are individuals 

with Parkinson's disease who have alterations in their immune system. Actually, 

PD patients exhibit a lower frequency of infections and cancer, suggesting a 

stimulation of the immune system [22]. The genes STK11 and STK35 participate 

in protein phosphorylation and are related to PD as mentioned before [17][9]. The 

gene MTHFD1 is concerned with amino acid biosynthesis and appears to affect 

PD [10] as discussed earlier. Here, we notice that the genes STK11 and MTHFD1 

also appears in the signature of the normal brain for distinguishing Node3 and 

Node4. 

The genes ZBP1 and CDH13 are oncogenes involved in cell cycle 

regulation. There is a strong connection between cell cycle and neurodegenerative 

diseases, especially Alzheimer's [12]. However, this gene is also having 

differences in the Node2 of the normal and PD brain. The gene LPHN2 is a gene 

appearing in G-protein mediated signaling and is again found to be related to PD 

as mentioned earlier [18]. The gene HSD3B4 participates in cholesterol 

metabolism, which is a very generic biological function. However, differences in 
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movement of cholesterol between different cellular compartments of the CNS and 

across the blood-brain barrier to the plasma were detected in mice with one form 

of neurodegenerative disease (Niemann-Pick type C). The gene PCBD takes part 

in Pterin metabolism. Pterin cofactors are required for tyrosine hydroxylase (TH) 

activity, which converts tyrosine into L-dopa. The final conversion of L-dopa to 

dopamine is controlled by an enzyme called dopadecarboxylase. The relation 

between pterin metabolism and Parkinson's is well-known, since fibroblasts 

supplemented with pterin cofactors were found to produce L-dopa [23]. 

 

6.3. Genes: Node3 

 

Next we discuss the significant genes which differ in Node3 of the two 

brains. We found the gene BTK which is involved in Protein phosphorylation and 

is mentioned in relation to PD in [17][9]. Then the gene ADAM12 and MEll1are 

required for proteolysis and it is known that failure of this process can trigger 

neurodegenerative diseases like PD [7]. The gene CDC2A is found the p53 

pathway and recent studies have shown a relation between p53 and brain 

degeneration [21]. Also, the gene JARID2 is involved in mRNA transcription 

regulation and neurogenesis and is related to PD [11]. The gene CANT1 has role 

in nucleoside, nucleotide and nucleic acid metabolism and is affected in Node2. 

The gene PRKAR1A appears in G-protein signaling pathway and is mentioned in 

connection with PD by [18]. Again, the gene TNFAIP8, which appears in 

Huntington disease pathway and has already appeared in the signature of Node1 

distinguishing Node3 and Node4 of the normal brain, gets affected in the Node3 

of the PD brain. 

 

6.4. Genes: Node4 

 

Now, we describe the genes which are affected in Node4 (containing 

cerebellum). In the signature where Node3 and Node4 of the normal brain were 

compared, we found two genes, CMYA4 and CATNA1, which again appear in 

the comparison of two sets of Node4 voxels. The genes UBE2J1 and TRIM11 are 

involved in proteolysis and are known to affect neurodegenerative diseases [7]. 

We also found the following genes which participate in mRNA transcription 

regulation and are known to affect PD brain [11]: JMJD3, CHD1l, PHTF2 and 

MEF2B. The genes related to protein phosphorylation (IlKAP, PPM1B, CDK6 

and ITK) are also affected in Node4 of the PD brain [17][9]. The ITK gene has 

also the T-cell mediated immunity biological function [22]. Again, CDK6 is an 

oncogene involved in cell cycle regulation and is connected to Alzheimer's 

disease [12]. In Node4 of the PD brain, we also found changes in the genes ADK, 

which is responsible for nucleoside, nucleotide and nucleic acid metabolism; 
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FGF15 which causes neurogenesis; and GSPT1 which takes part in protein 

biosynthesis (known to be related to PD [14]). 

 

7. Conclusions 

 

In this paper, we applied a new unsupervised clustering on the microarray 

data for the voxels in a normal mouse brain and obtained the corresponding 

genetic signature distinguishing the two sets of voxels of the normal mouse brain 

during first few bi-partitioning of this dataset. We also compared the similar 

clusters of normal and MA-treated mouse brains using the genes. Finally, we 

showed some of the genes which were significantly affected in each of the 

clusters of the MA-treated brain. In this work, we did not only show how the 

known regions of the affected PD brain, i.e., cerebellum and striatum are affected, 

but also showed how the relatively unexplored regions were affected. Our 

hypothesis is that probably the whole brain is slowly affected by PD. 
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