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INVESTIGATING THE CHANGE OF THE HIERARCHICAL
PATTERN OF GENE EXPRESSION IN THE NORMAL AND
PARKINSON'S BRAIN USING A COMBINATORIAL
OPTIMIZATION BASED UNSUPERVISED CLUSTERING
METHOD

Mou'ath HOURANI?, Pritha MAHATA?, Ibrahiem M. M. El EMARY?®

Previous works on Parkinson's disease (PD) mainly focused on genes
differentially expressed between the anterior and the posterior sections of the brains
of a normal mouse and the one with PD. However, no work has been done in finding
a hierarchical pattern of gene expression between the different regions of a brain.
Such a hierarchy is useful to locate genetic specializations within a normal brain,
thus in analyzing how brain infirmities affect these specializations. We use a
recently proposed method of robust hierarchical clustering using arithmetic-
harmonic cut to construct the hierarchical relation between different regions of the
brain. Then, we show how similar regions of the normal and PD brain differ in gene
expressions, indicating a functional variation due to Parkinson's disease in a few
high-level clusters of brain regions.

Keywords: Parkinson’s disease, gene expression, combinatorial optimization,
unsupervised clustering.

1. Introduction

Many countries are increasingly witnessing the effect of Parkinson's
disease (PD) in a majority of their old population. It is a progressive
neurodegenerative disease characterized by continual tremors, rigidity of the
limbs, slowness of movement and difficulty with balance and coordination. Works
from literature like [1] targeted mice for finding the genetic markers of PD. They
created PD model by administration of toxic doses of methamphetamine (MA) to
C57BL/6J mice [1]. At the doses used by [1], the mouse model of PD has been
reported to have substantial loss (45%) tyrosine hydroxilase-positive
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dopaminergic cells in the substantia nigra (a part in the brain), as well as
destruction of dopaminergic nerve terminals in the neostriatum.

We consider the microarray data provided by [1]. This data consists of 9,
000 genes and 80 experiments (40 experiments from the normal and 40
experiments from the MA-treated mouse). In fact, brains from both normal and
MA-treated mice were divided into 40 voxels (cubic 3D image elements) by
slicing each brain into 10 coronal sections and cutting each slice again into four
voxels. The work of [1] reports that both normal and PD brains have striking
lateral symmetry, i.e., both brains have similar expression in their left and right
halves. Furthermore, they compared left (right) brain of the PD mouse with the
left (right) brain of the normal one and found that there is a significant difference
in expression between the genes repressed or induced in the MA brain.

However, the work in [1] mainly considers genes which distinguishes
between the whole anterior (20 voxels) part from the posterior part (20 voxels) of
the normal and the MA brains. This motivated us to concentrate on identifying
parts of the normal brain which are genetically similar (with respect to the
expressions of the genes) and analyze if they are also functionally similar. In this
paper, we employ a recent combinatorial optimization based hierarchical
clustering method [33] on the voxels of the normal brain. Notice that the use of
this clustering algorithm over popular methods like agglomerative hierarchical
clustering, k-means, etc for this purpose is motivated by the success of [33]'s
clustering results on diverse datasets like the dataset of 84 Indo-European
languages [35], National Cancer Institute's microarray data of 64 cancer cell-lines
[36], etc. Then, we find the genetic signatures for such partitions of the normal
brain, i.e., we select the genes which are differentially expressed in the two sides
of each node of the tree. The strongly contrasting expressions of a huge number of
genes in the first few partitions lead us to infer that such unsupervised partitioning
really cluster regions of the brains which are genetically similar. Furthermore, this
allows us to analyze how the genes in these signatures are affected in the similar
voxels of the MA-treated mouse brain. This approach seems to be very logical in
the sense that brain activity may not always depend on spatially co-located
regions in the brain. To see deeper, we compare three significant clusters of
voxels from the normal and the PD brain and show the genes which make these
regions different in the two brains. One of the regions includes all voxels from the
rostral cerebellum, a few from septo-striatum and diencephalon.

2. Methods
Our approach consists of employing a recently developed combinatorial

optimization based method for hierarchical clustering to find a hierarchical
structure within the 40 voxels normal mouse's brain. Then in order to explore the
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relations that arise within the hierarchical tree structure, we use a statistical
approach that selects genes supporting the hierarchy of the samples in the normal
brain.
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Fig.1 Example of the hierarchical genetic signature of a classification tree. (A) An example of

hierarchical clustering of 4 sets of samples, given by SamplesA, SamplesB, SamplesC, and SamplesD.
(B) Genes that explain the division of NodeO into Nodel and Node2. (C) Shows the genes
distinguishing between the sets Node3 and Node4. (D) Shows the genes distinguishing between the sets

Node5 and Node®6.

This is illustrated using Fig. 1. In Fig. 1A, we show an example of hierarchical
clustering of 4 sets of samples, given by {SamplesA, SamplesB, SamplesC,
SamplesD}. We call the union of these sets as Node0. Similarly, Nodel (Node2
resp.) denotes the union of the sets SamplesA and SamplesB (SamplesC and
SamplesD resp.). Finally, Node3, Node4, Node5 and Node6 refer to SamplesA,
SamplesB, SampleC and SamplesD, respectively. Now we proceed to select
relevant genes distinguishing the siblings in the tree. Fig. 1B shows genes that
"explain™ the division of NodeO into Nodel and Node2. We repeat this procedure
over the new sets created. Thus Fig. 1C (Fig. 1D) shows the genes distinguishing
between the sets Node3 and Node4 (Node5 and Node6 resp.). We stop when we
cannot find significant evidences within the data set to continue with this
procedure, or if there are too few samples to evaluate the quality of the results.
This analysis gathers the information characterizing each group of samples
(SamplesA, SamplesB, SamplesC and SamplesD). Also, at the nodes further from
the leaves (say at Node0), it tells us which genes have similar expressions in
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SamplesA and SamplesB (which are clustered together in Nodel), while having
an altogether different expressions in both SamplesC and SamplesD (which are
together in a different partition, namely Node2). The data at each of the non-leaf
nodes can be visualized as in Figs. 1B, C and D.

This methodology requires reliable cluster approaches and competent gene
selection method. In Mahata et al. (2006) [33] one novel approach for the
clustering was designed and tested using the Indo-European languages data set
and NCI60 cancer data set. The above paper shows the robustness of the
clustering method used here, when compared with other clustering methods
previously reported in the literature and applied to the same data sets. In applying
the algorithm, we follow the following steps:

= The algorithm used in this paper poses the clustering problem as a graph
optimization problem. It uses a novel objective function that performs very
well in diverse types of datasets.

= |t starts with forming a distance matrix for a set of objects and computes a
weighted graph in which vertices represent objects and edges are weighted
by the distance between the corresponding vertices.

= Then the objective function tries to obtain a solution whose fitness is
maximal and proportional to the sum of the weights on the edges between
two sets of vertices, and to the sum of the reciprocals of the weights on the
edges inside the sets. This is denoted as arithmetic-harmonic cut.

= The recursive application of such cuts generates a tree-based classification
of the data.

While the primary concern was the classification of microarray data, the
algorithm was also tested under two different datasets: (a) a dataset for 84 Indo-
European languages, and (b) a dataset for 60 cancerous cell-lines (NCI60) to
explain the robustness of the approach and validating it in different domains [33].
The detailed clustering approach is explained below.

2.1. Combinatorial Optimization based Unsupervised Hierarchical
Clustering Method

We apply an unsupervised hierarchical clustering method to establish the
hierarchical pattern of gene expression within the voxel scheme of a normal
mouse's brain (gene expression data of 40 voxels from [1]). In Mahata et al.
(2006) [33] one novel approach for the clustering was designed and tested using
the Indo-European languages data set and NCI60 cancer data set. The above paper
shows the robustness of the clustering method used here, when compared with
other clustering methods previously reported in the literature and applied to the
same data sets. In case of Indo-European languages, there are historical and
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archeological evidences, which provide good expectation about the correct
solution and more importantly it was easier to detect gross and medium size error.
Again, in case of NCI 60 dataset, the labels of different samples were known a
priori.

The method of [30] for bi-partitioning the vertices of a given graph,
maximizing a given objective function (Equation 1) to yield maximum inter-
cluster dissimilarity and minimum intra-cluster dissimilarity is called Arithmetic-
Harmonic Cut. They use this method within a top-down procedure, which
recursively bi-partitions the samples in the dataset. In the dataset under
consideration in this paper, we stop bi-partitioning when we cannot find
significant evidences within the data set to continue with this procedure (the
expression levels of the two partitions are not having high contrast), or if there are
too few samples to evaluate the quality of the results.

Formally, we create a complete, weighted graph G(E, V, W) without self-
loops where V is the set of vertices (corresponding to the voxels in our case). The
weight of any edge e is a positive integer number (i.e. w(e) > 0) representing the
distance or some measure of dissimilarity between a pair of vertices. In this case
the weight of an edge (i, j) between the vertices i, j is given by the Pearson
correlation based distance.

We consider that any partition of the set V of voxels into two non-empty
subsets S and V \ S also generates a partition of the set E of edges in two sets Ei,
and Eou. The set Equt < E is the subset of edges that link two vertices of different
sets, i.e., a vertex in S and a vertex in V \ S. Similarly, Ei, = E \ Eqy is the set of
edges connecting vertices within the same subset of voxels. The partition of our
interest is defined as the one that maximizes the following objective function

F=(2 w(e)( Q> Ywe) D)

eeEy ecE;,

It turns out that solving the above optimization problem algorithmically is
APX-hard [27]. Thus, we use a meta-heuristic, so-called, memetic algorithm for
solving AH-Cut. Memetic algorithms provide a population-based approach for
heuristic search in optimization problems. Basically, they combine local search
heuristics with crossover operators used in Genetic Algorithms [24]. The essence
of our algorithm is similar to the work of Merz and Freisleben in [28] for Graph
Bi-partitioning. The difference in our algorithm from that of [28] arises from the
fact that we need to remove the constraint of equal partitioning of the graph. The
method consists of three main procedures: (a) a differential greedy algorithm (a
modification of the algorithm in [29]) for initialization of a set of solutions for
AH-Cut, (b) a differential greedy crossover (a modification of the algorithm in
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[28]) for evolution of the population, and (c) a variable neighbourhood local
search (see [30]) to improve the newly generated solutions.

First of all, we use a ternary tree for population as in [25] and keep two
solutions at each node of this tree. One solution is the best obtained so far at the
node, called pocket solution and the other one is the current solution. Essentially,
if we generate a current solution by recombination or local search which is better
than the pocket solution, we swap this current solution with the pocket solution.
Furthermore, each parent node of the tree must have better pocket solution than its
children's pocket solution. Similar tree structures were previously advocated
successfully in various combinatorially hard problems (e.g., see [31, 25, 32, 34]).

First we initialize the population by using a variant of the differential
greedy algorithm used in [29] for the GRAPH BI-PARTITIONING problem. This
scheme has a bottom-up approach. It first randomly chooses two vertices v, v’
from the set V and puts one in S and the other inS . For each of the remaining
vertices u in V: =V \ {v, v}, we compute the sum of the weights from the vertex
to the set S and S and call this distance dist (S, u) and dist (S, u) respectively.
These vertices are then sorted in an increasing order according to the metric dist
(S, u)—dist (S, u) in list L. Unless the set V is empty, we choose whether a vertex

will be inserted in set S or in S by tossing a coin. If the chosen set is S, we pop a
vertex u from the bottom of the list L and update S: = Su{u}. We also update the

list of remaining vertices according to the function dist and the current S andS .
Also, we update the set V: = V \ {u}. The case for including a vertex in the set

S is similar, where a vertex u is popped from the top of the list L.

After initializing, we keep on doing the following unless there are no more
changes in the best solution. We randomly choose a parent and a child solution
from the ternary tree and crossover the parent's pocket solution with one of its
child's current solution. All vertices that are contained in the same set for both the
parents are included in the same set in the offspring. Then both sets are filled
according to a differential greedy recombination method similar to that in the

initialization. In this case, the starting set S (S ) for the offspring is given by the

intersection of the set S (S resp.) from both the parents. This crossover method
takes care of the diversity in the population.

To better the quality of the obtained solution, we also employ the variable-
neighborhood search (VNS), first proposed by Hansen and Mladenovic [26] for
the local search in the neighborhood of the new offspring. Contrary to other local
search methods, VNS allows enlargement of the neighborhood structure along the
search.

Finally, whenever the population stagnates, we keep the best solution and
re-initialize the rest of solutions in the set and run the above process again for
certain number of generations (say, 30).



[change of the hierarchical pattern of gene expression in the normal and parkinson's brain] 147

For the small sized problems (graphs containing less than 25 vertices), we
used backtracking. Notice that even though backtracking gives us an optimal
solution, a memetic algorithm may not.

2. 2. Feature Selection

The next step is to find the genetic signature for each non-leaf node of the
hierarchical tree obtained from the above clustering method. This method is aimed
to find the optimal set of genes which enforces inter-class discrimination and
intra-class similarity.

Given a set of voxels divided into two disjoint subsets S1 and S2, we
define the function (often called target) t that maps voxel v € S1 U S2 into the set
{1; 2} such that t(v) = i if v e Si where i  {1; 2}. Briefly, t(v) gives the set to
which v belongs. Now, the feature selection method is composed of two phases:

Phase 1 - Minimum feature selection. In this phase, a linear integer model
is built and solved to discover the minimum number of genes, k, that are necessary
such that all pairs of voxels (i; j) from different sets (i.e. with t(i) # #(j)) have at
least o dichotomies. Also, all pairs of samples (i; z) from the same class (i.e., with
t(i) = t(z)), have at least 3 similarities.

Phase 2 - Maximum cover gene selection. As there might be multiple
solutions with k genes from phase 1, we construct and solve a new linear integer
model to find the set of k genes that maximizes the contrast between different
classes, and also maximizes the similarities within classes. To do this, phase 2
keeps the (a, 8) constraints plus one extra constraint of k genes to ensure that we
are looking only to the solutions obtained from phase 1.

It is clear that to use this method, we need to define when a given gene g
keeps similarities within one class or not. In this case, entropy is applied as in [3]
over each gene in the data set.

Basically, the Fayyad and Irani (1993) [3] method finds thresholds for a
gene's expression, which best divide the distinct classes, according to a minimum
description length criterion. As we are interested in dichotomies, a modified
version of their algorithm was used to find only one threshold r [3].

Therefore, a gene g makes a dichotomy between voxels i and j if and only
if, the threshold r for gene g separates the expression value g; and g;, i.e.
gi<r<gjorgi<r<g;i

GisrAg>nV(gi>rAg=<r) (2)

The above phases comprise optimization problems that are not likely to be
fixed-parameter tractable as shown in [4]. However, the use of a standard integer-
programming formulation as in [37] in conjunction with an IP solver (ILOG
CPLEX 9.1) enabled us to solve this problem to optimality.
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3. Experiments

We give a hierarchical classification tree for the normal brain based on the
genes expressions using the above mentioned divisive hierarchical clustering
method. The grouping obtained is confirmed by applying Principal Component
Analysis (PCA) over the entire data set. We produce a set of genetic signatures
based on the hierarchy obtained, which identifies each group, and also
characterize their hierarchical relationship. The provided genetic signatures reveal
the profile of similarities between some non-connected regions of the brain. The
identified signatures for the hierarchical classification are further examined over a
mouse brain with Parkinson's disease. We show that the genetic specializations in
the normal brain, pointed by the signatures, change considerably in the specimen
with Parkinson's disease. Furthermore, we compare the regions of the normal and
diseased brains according to the hierarchy, and give genetic signatures that
highlight significant changes due to the Parkinson's disease. In this work, we show
how the known regions of the affected PD brain, i.e., cerebellum and striatum and
the relatively unexplored regions are affected. The hypothesis is that the whole
brain is slowly affected in PD. It is also highly likely that the effect observed in
this model of PD is a result of chemically induced disease.

4. Normal Brain

4.1 Classification Tree of the Voxels

The hierarchical clustering using the Arithmetic-Harmonic Cut (AHC)
(described in Section 2.1) on the voxels from a normal mouse brain yields the
classification tree shown in Fig. 2.
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Fig.2 Hierarchical Classification for the normal mouse brain. After applying AHC on
Nodel, all voxels from section | are clustered together in Node4.
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The first partition at NodeO of the tree (i.e. Nodel consists of voxels H1,
C2, G3, E3, E1, C4, C3, I1, 13, 12 and 14). Amongst these, (11, 12, 13 and 14)
belong to the rostral cerebellum. The cerebellum is a very important structure in
motor movement and motor-vestibular memory and learning. It is responsible for
processing sensory information and providing coordinated, smooth movements of
the skeletal muscular system. After the application of the AHC on Node 1, again
we see that all voxels from the section | are clustered together in Node4 (see
Figure 2). The voxels C2, C3, C4 in Nodel are from septo-striatum. Striatum is
best known for its role in the planning and modulation of movement pathways.
Both cerebellum and striatum are mentioned in the literature for affecting the
brain of a MA-treated mouse. We also note that the slices E and G correspond to
septo-diencephalon and caudal diencephalon respectively. The Thalamus in the
diencephalon part is responsible for coordination and regulation of all functional
activity of the cortex. Finally, the slice H corresponds to the caudal
mesoencephalon region of the brain.

Note that after unsupervised clustering of the voxels, even spatially
disconnected voxels in the mouse brain are clustered together, depending on the
similarity of their expressions.

4.2. Genetic Signatures

In Fig. 3a, we consider the genes which best distinguish between the
voxels in Nodel and Node2, while keeping intra-cluster similarity. We employ
(o,B)-feature selection (See Section 2.2) for this purpose. Using « = 1,001, B =
881, we found 1,657 genes that give us the best signature for NodeO, splitting
Nodel from Node2.

Fig. 3 .Genetic Signatures for the normal mouse brain: (A) Signature at NodeO distinguishing the
voxels in Nodel and Node2. (B) Signature at Nodel distinguishing the voxels in Node3 and Node4.
(C) Signature at Node2 distinguishing the voxels in Node5 and Node6
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This signature shows that the voxels in Nodel have clearly distinguished
expression for all the genes selected. This is a clear marker of a normal brain and
is also the evidence why the disconnected voxels like C3 and C4 voxels are
together with the cerebellum ones (11, 12, I3 and 14).

Similarly, we consider the division at Nodel and Node2 in Fig. 3b and
Fig. 3c respectively. We found 1,783 genes with o = 1,415; 3= 1,403 at Nodel
and 398 genes with a = 221, = 221 at Node2 respectively. The signature at
Nodel is again very clear in distinguishing voxels from Node3 and Node4. Notice
that voxels from the cerebellum are all in Node4. However, the signature at
Node2 is rather homogeneous (very uniform, the voxels are not changing much).
This means that the voxels in Node2 are not too dissimilar in terms of gene
expression. Therefore, we did not divide Node2 further. If this group is splitted,
no distinguishing signature can be observed to support further sub-classification.
Same reasoning applies to Node3 and Node4.

We use Wilcoxon-Mann-Whitney test to find the 50 best genes with
lowest p-values from each of the above signatures of NodeO and Nodel and in
Section 4.3, we describe our findings for the obtained genes.

Principal Component Analysis

Principal Component Analysis (PCA) reduces dimensionality while
keeping the maximum possible variance of the original data. We performed an
PCA analysis on the 7,035 genes for the normal brain and show the results in Fig.
4. The green, blue and the red points turn out to belong to Node3, Node4 and
Node2 of Fig. 2 respectively. Notice that the voxels of Node3 and Node2 are not
fully separated. In Figs. 4 and 5, we show again that the PCA analysis on 1,657
genes obtained by the feature selection at NodeO (shown in Fig. 3(A)). In this
case, the clusters are much better separated.

4.3. Genes

First, we consider the 50 genes with best p-values from the signature at
NodeO (shown in Fig. 3a). For all these genes, p-values are lower than 4x107°. We
discuss the known functions of some of the obtained genes in the following. The
gene MRP111 is involved in protein biosynthesis. Now, it is known that the
abnormal accumulation of substrates due to loss of Parkin function may be the
cause of neurodegeneration in parkin-related Parkinsonism.

In [14], p38 (a key structural component of the macromolecular
aminoacyl-tRNA synthetase (ARS) complex involved in protein biosynthesis) was
identified to be playing a role in the pathogenesis of PD. The p38 subunit of the
aminoacyl-tRNA synthetase complex is a Parkin substrate, thus protein
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biosynthesis and neurodegeneration are linked. Also, the genes STX7 and
CSNK2AL1 are found already in [6] to be in the Parkinson's disease pathway.
Genes USP19, SENP5 and K1K12 are involved in Proteolysis.
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Fig. 4 PCA analysis on (a) total 7,035 genes. Fig. 51,657 genes obtained by the feature
selection at NodeO (shown in Fig. 3(A))

In [7], failure of ubiquitin-mediated proteolysis is suggested to be central
in the pathogenesis of neurodegenerative disorders like Alzheimer's and
Parkinson's diseases. The gene IKBKB has a biological function of protein
phosphorylation using protein phosphate, which represents the final pathway in
the action of transmitters and hormones at neuronal level [17]. Also, there is a
clear link between protein phosphorylation and Parkinson's disease, since it
regulates NMDA receptors, contributing to the pathogenesis of motor dysfunction
in PD subjects [9]. The gene PAPSS2 is involved in amino acid biosynthesis. The
study in [10] shows that the biosynthesis of amino acids reduces the metabolic
activity of neurons in Parkinsonism. The genes HOXC5 and TIEGL1 are involved
in mRNA transcription regulation. A recent report [11] indicated that D1, a
dopamine receptor (used in MRNA transcription regulation) changes after chronic
levodopa (L-dopa) treatment, linking it with Parkinson's disease. Also, the gene
TNC is involved in Neurogenesis [12] and is present in our signature. The gene
NDUFA7 which belongs to the Alzheimer disease pathway [13] also plays a
significant role in this partitioning of the normal brain. Then, the gene MIIT2H is
an oncogene involved in cell cycle regulation. There is a strong connection
between cell cycle and neurodegenerative diseases, especially Alzheimer's [12].
However, MIIT2H also seems to play a good role in separating Nodel from
Nodez2.

Similarly, we consider some of the 50 genes with best p-values (at most 7
%107, which distinguish between Node3 and Node4. It turns out that the genes
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CMYA4 and SEPTA4 are already known to be in the Parkinson disease pathway.
The genes MRPS14, GSPT1 and RPS5 have functions in protein biosynthesis and
are mentioned in [14] in relation to PD. We also found DDX50 in this signature,
which is involved in nucleoside, nucleotide and nucleic acid metabolism.
Interestingly, we found the gene TNFAIPS in this signature. The gene TNFAIP8
belongs to the Huntington's disease pathway, a CNS condition characterized by
the damage of the nerve cells in the basal ganglia and cerebral cortex. This gene
is also involved in the influence of altered expression of complexins in the
modulation of neurotransmitter releases [15] and morphological variations of
striatal medium spiny neurons [16]. The genes BIRC2, MTHFD1, STK11 were
also selected and they are active in the apoptosis signaling pathway, amino acid
biosynthesis [10], and protein phosphorylation [17][9] respectively and the three
of them were previously related to PD. The gene RAP1A is part of the G-protein
signaling pathway, which plays a variety of roles in numerous neuronal functions.
Also, the interaction between G protein-coupled receptor kinases (GRKSs) and RB-
arrestins regulates physiological responsiveness to psychostimulants, indicating a
potential involvement in brain disorders, such as addiction, Parkinson's disease
and schizophrenia [18]. The genes JMJD3 and MEF2B also take part in mMRNA
transcription regulation and are related to PD in [11]. Finally, the gene CATNA1
appears in the signature which was found in Alzheimer disease pathway [13]. The
signature at Node2 is not very distinctive in the sense that there are no major two
groups present in the voxels at Node2. Therefore, the signature at Node2 of the
normal brain is omitted here.

5. Comparison between Normal and Parkinson Brain

Next we compare the level of the expressions between the normal brain
and MA-treated mouse brain for the genes in the signature at NodeO, Nodel and
Node2 of the normal brain. In Fig. 6a, we consider the genetic signature for
Node0 of the normal brain and show their expressions at the corresponding voxels
in the MA-treated mouse brain. The genes presented in the picture are in the same
order as in Fig. 3. It is evident from this picture that the voxels in Nodel of the the
MA-treated mouse brain turns out to have expressions very similar to those for
voxels in Node2. This means that the genes which were differentially expressed in
Nodel and Node2 of the normal brain, are now similarly expressed in the voxels
at both nodes, yielding a rather homogenous signature. The same phenomenon is
also present at the voxels in Nodel of the MA-treated mouse brain. The genes
which are differentially in Node3 and Node4 have now similar expressions in the
MA-treated brain. Also, notice that the voxels in Node2 of the MA-treated brain
are also affected, even though to a smaller extent. The genes which were
differentially expressed (even though weakly) in Node5 and Node6 (Node5 and
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Node6 originate from Node2) have now a more homogenous expression in both
nodes of the MA-treated brain. This may generate a hypothesize for Parkinson's
disease, even though initial effects can only be observed in the cerebellum, it is
probably that genetic affects over other parts of the brain can be measured before
other phenotype changes appear.

6. Genetic Signature for Node-wise Comparison of Normal and MA-
Treated Brains

In the previous section, we showed that the expressions at different voxels
of MA-treated brain tend to be very similar in contrast to those for a normal brain.
Now, we seek a signature to find a small number of genes which are differentially
expressed at each of the nodes Nodel, Node2, Node3 and Node4 in the normal
and MA-treated brain. This will allow us to look at each of the voxels in the
corresponding nodes and pin-point genes which are affecting each of these nodes
in PD. In Figs. 6a-d we show genetic signatures where the voxels of the normal
brain at each of the nodes Nodel, Node2, Node3 and Node4 are compared against
those in the MA-treated brain respectively. In Figs. 6e and 6f, we also show the
union of the genes present in Figs. 6a to 6d in the whole normal brain and in the
whole MA-treated brain.

For further functional analysis of the above nodewise comparison, we
select a set of 50 genes with best p-values in the following for each of the above
cases in Figs. 6a-d. For Nodel, we show in Fig. 6 the expressions of 1,888 genes
from feature selection with a = 1,223; R = 1,223. We select 50 of the above genes
with maximum p-value as 8 x 10™!. Similarly for Node2, we show 1,375 genes in
Figs. 6(b) with a = 3= 664 and the maximum p-value of the selected 50 genes
from this is 10, Also, for Node3 and Node4, we get 1,763 and 2,691 genes
respectively. For Node3, a = 1,435; B = 1,403 and the maximum p-value taken is
10 and for Node4, we have a = 2,691; B = 2,260 and the maximum p-value of
the selected genes is 4 x 107,

In the following, we consider the voxels in the nodes Nodel, Node2,
Node3 and Node4 for the normal and the MA-treated brains. In each case, we
indicate some of the important genes from the above sets of 50 genes which
distinguish a node in the normal brain from that in the MA-treated brain.
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Fig. 6. Comparing different partitions of the normal and the MA-treated mouse brain. Genetic
signature distinguishing (a) Nodel, (b) Node2, (c) Node3, (d) Node4 of both brains, union of all
the aforementioned genes in (e) normal brain and (f) MA-treated brain

'NORMAL BRAIN PARKINSON'S BRAIN

6.1. Genes: Nodel

We list down the genes which were significantly differentially expressed
in the two sets of voxels (normal and PD) from Nodel and were mentioned in
literature for their functions related to brain or in relation to some
neurodegenerative diseases. We found the genes PINK1 [19] and CSNK2A1 [6],
both of which are already mentioned in the literature to be PD-related. Notice that
CSNK2AL1 was already found to be different in Nodel and Node2. It seems that
this gene expression in PD brain is more like that in Node2.We also found
PPP1R9B which was also related to Schizophrenia [20]. This is very significant as
it is widely accepted that neurodegenerative diseases in general share similar
action mechanisms and also have genes in common. We also found GSK3B
which is related to both Alzheimer's disease and Schizophrenia [13]. We obtained
another gene, MTA2, which promotes the deacetylation of p53, modulating cell
growth arrest and apoptosis. Recent studies have shown a relation between p53
and brain degeneration [21]. The gene BCO003885 is involved in Protein
biosynthesis and is also reported in [14] for playing a role in PD. The genes
PTPN9, CDK9 and PRPF4B are involved in Protein phosphorylation, as
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mentioned in Section 4.3. The genes RGS5 and PRKARI1B are part of G-protein
signaling pathway [18] and are found in this case. Again, USP19 which was
distinguishing Nodel and Node2 of the normal brain appears in the comparison
between the Nodel of the two brains. There were also two genes, PHGDH and
CTBP1, which are known to be active in Amino acid biosynthesis and affecting
PD [10]. Finally, the genes DDX21, SIC35C1 and RBM28 are involved in
nucleoside, nucleotide and nucleic acid metabolism and considering their
functions, they may be related to Parkinson's disease.

6.2. Genes: Node2

We already mentioned that even though in a smaller amount, the voxels in
Node2 are also affected in the PD brain. Here we mention some of the few genes
which we found in the 50-gene set. We found the genes MAPK6 and GSK3B,
which also appear in Alzheimer's disease pathway and also have been linked to
Schizophrenia [13]. Notice that the gene GSK3B also played an important role in
distinguishing the normal brain's Nodel and Node2. The gene SNX27 is again
related to G-protein signaling pathway and known to affect PD [18]. We also
found a new gene SIC1A2 in Node2 comparison, which is in the ionotropic
glutamate receptor pathway (iGIuR). IGIuRs are responsible for fast, reliable
neurotransmission in the vertebrate central nervous system, being essential for
learning and memory. There is also another gene MRPS25 which plays a role in
protein biosynthesis and is related to PD [14]. The genes NCOR1, E2F7, GFI1B,
and ZFP113 take part in mMRNA transcription regulation and are linked to PD in
[11]. We also found the gene CD1D1 has an intriguing function called T-cell
mediated immunity. It has been known for many years that there are individuals
with Parkinson's disease who have alterations in their immune system. Actually,
PD patients exhibit a lower frequency of infections and cancer, suggesting a
stimulation of the immune system [22]. The genes STK11 and STK35 participate
in protein phosphorylation and are related to PD as mentioned before [17][9]. The
gene MTHFD1 is concerned with amino acid biosynthesis and appears to affect
PD [10] as discussed earlier. Here, we notice that the genes STK11 and MTHFD1
also appears in the signature of the normal brain for distinguishing Node3 and
Node4.

The genes ZBP1 and CDH13 are oncogenes involved in cell cycle
regulation. There is a strong connection between cell cycle and neurodegenerative
diseases, especially Alzheimer's [12]. However, this gene is also having
differences in the Node2 of the normal and PD brain. The gene LPHNZ is a gene
appearing in G-protein mediated signaling and is again found to be related to PD
as mentioned earlier [18]. The gene HSD3B4 participates in cholesterol
metabolism, which is a very generic biological function. However, differences in
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movement of cholesterol between different cellular compartments of the CNS and
across the blood-brain barrier to the plasma were detected in mice with one form
of neurodegenerative disease (Niemann-Pick type C). The gene PCBD takes part
in Pterin metabolism. Pterin cofactors are required for tyrosine hydroxylase (TH)
activity, which converts tyrosine into L-dopa. The final conversion of L-dopa to
dopamine is controlled by an enzyme called dopadecarboxylase. The relation
between pterin metabolism and Parkinson's is well-known, since fibroblasts
supplemented with pterin cofactors were found to produce L-dopa [23].

6.3. Genes: Node3

Next we discuss the significant genes which differ in Node3 of the two
brains. We found the gene BTK which is involved in Protein phosphorylation and
is mentioned in relation to PD in [17][9]. Then the gene ADAM12 and MElllare
required for proteolysis and it is known that failure of this process can trigger
neurodegenerative diseases like PD [7]. The gene CDC2A is found the p53
pathway and recent studies have shown a relation between p53 and brain
degeneration [21]. Also, the gene JARID2 is involved in mRNA transcription
regulation and neurogenesis and is related to PD [11]. The gene CANT1 has role
in nucleoside, nucleotide and nucleic acid metabolism and is affected in Node2.
The gene PRKAR1A appears in G-protein signaling pathway and is mentioned in
connection with PD by [18]. Again, the gene TNFAIP8, which appears in
Huntington disease pathway and has already appeared in the signature of Nodel
distinguishing Node3 and Node4 of the normal brain, gets affected in the Node3
of the PD brain.

6.4. Genes: Node4

Now, we describe the genes which are affected in Node4 (containing
cerebellum). In the signature where Node3 and Node4 of the normal brain were
compared, we found two genes, CMYA4 and CATNAL, which again appear in
the comparison of two sets of Node4 voxels. The genes UBE2J1 and TRIM11 are
involved in proteolysis and are known to affect neurodegenerative diseases [7].
We also found the following genes which participate in mRNA transcription
regulation and are known to affect PD brain [11]: JMJD3, CHD1Il, PHTF2 and
MEF2B. The genes related to protein phosphorylation (IIKAP, PPM1B, CDK6
and ITK) are also affected in Node4 of the PD brain [17][9]. The ITK gene has
also the T-cell mediated immunity biological function [22]. Again, CDK®6 is an
oncogene involved in cell cycle regulation and is connected to Alzheimer's
disease [12]. In Node4 of the PD brain, we also found changes in the genes ADK,
which is responsible for nucleoside, nucleotide and nucleic acid metabolism;
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FGF15 which causes neurogenesis; and GSPT1 which takes part in protein
biosynthesis (known to be related to PD [14]).

7. Conclusions

In this paper, we applied a new unsupervised clustering on the microarray
data for the voxels in a normal mouse brain and obtained the corresponding
genetic signature distinguishing the two sets of voxels of the normal mouse brain
during first few bi-partitioning of this dataset. We also compared the similar
clusters of normal and MA-treated mouse brains using the genes. Finally, we
showed some of the genes which were significantly affected in each of the
clusters of the MA-treated brain. In this work, we did not only show how the
known regions of the affected PD brain, i.e., cerebellum and striatum are affected,
but also showed how the relatively unexplored regions were affected. Our
hypothesis is that probably the whole brain is slowly affected by PD.
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