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A NEW APPROACH FOR FINDING EXACT
SOLUTIONS OF FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS

Qinghua FENG"

In this paper, by introducing a new ansatz, a new fractional sub-equation
method is proposed for finding exact solutions of fractional partial differential
equations (FPDES) in the sense of modified Riemann-Liouville derivative. For
illustrating the validity of this method, we apply it to the space-time fractional
Whitham-Broer-Kaup (WBK) equations and the space-time fractional Fokas
equation. As a result, some new exact solutions for them are successfully
established..
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1. Introduction

Recently, Fractional differential equations have been the focus of many
studies due to their frequent appearance in various applications in physics,
biology, engineering, signal processing, systems identification, control theory,
finance and fractional dynamics. Among the investigations for fractional
differential equations, research for seeking exact solutions and approximate
solutions of fractional differential equations is a hot topic. Many powerful and
efficient methods have been proposed so far (for example, see [1-12]). Using
these methods, solutions with various forms for some given fractional differential
equations have been established.

In this paper, we propose a new fractional sub-equation method to establish
exact solutions for fractional partial differential equations (FPDESs). The fractional
derivative is defined in the sense of modified Riemann-Liouville derivative by
Jumarie [13]. This method is based on the following fractional ODE:

DI*G(&) + uG(§) =0, u %0, 1)
where D§“G(§) denotes the modified Riemann-Liouville derivative of orde

a for G(&) with respectto &.

The definition and some important properties for the Jumarie's modified
Riemann-Liouville derivative of order « are listed as follows [13]:
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D 1 (= | TA- )dtj( —E)(F (&) - F(0)dE,0<a <1,

(FP)“™ n<a<n+ln>1

Dtlltr — r(1+ r) tr*a’ (2)
rd+r-o)
D (f(1)g(t)) = 9(®D (f )+ F(OD(9(t)), ®)
D7 flg®]= f, T9(®1D{g(t) = Dy f[g(®I(9' ()" (4)
We organize this paper as follows. In Section 2, we derive the expression for
DIG
é(;f) related to Eq. (1). In Section 3, we give the description of the fractional

sub-equation method for solving FPDEs. Then in Section 4 we apply this method
to establish exact solutions for the space-time fractional Whitham-Broer-Kaup
(WBK) equations and the space-time fractional Fokas equation. Some conclusions
are presented at the end of the paper.

°G
2. The general expression for — ©)
G(%)
In order to obtain the general solutions for Eq. (1), we suppose G(&)=H(7),
and a nonlinear fractional complex transformation 7 = J . Then by Eq. (2)
rd+ea)

and the first equality in Eq. (4), we have D{G($) = D7H () =H'(n)Din=H'(n).
So Eqg. (1) can be turned into the following second ordinary differential equation

H"(r7) + uH (7) = 0. ()
By the general solutions of Eq. (5) we have

(CS|nh\/_77+C cosh\/_n <0,

—u
H"(7) C, cosh \/—un +C, sinh —/177

H (7) \/—(—C siny/un+C, cosfry
C,c0s+/un+C, smfn
where C,,C, are arbitrary constants.
Furthermore, we obtain

(6)
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C,sinh rfa +C, cosh ﬁga

\/;[ I'l+ea) r@a+ a)] 1<0,
C, cosh \/_‘f +C,sinh \/_5
DIG(S) _ Fl+a) I1+a) )
&) —ClsinMJrC COSM

Jal Il+a) ° F(1+a)]
C, cos \/75 sin \/75

(1+a) C rl+a)

3. Description of the fractional sub-equation method

In this section we describe the main steps of the fractional sub-equation
method for finding exact solutions of FPDEs.
Suppose that a fractional partial differential equation, say in the

independent variables t, x,, X,,..., X, , is given by
P(Uy,.... Uy, DU, -, DU, DU, DR, DY U
Dy u,, D “uy,..., D“u,, Dy,...) =0, (8)
where u, = u, (t, X, X,,...,X,),1 =1,...,k are unknown functions, P is a polynomial
in u; and their various partial derivatives including fractional derivatives.
Step 1. Suppose that
U (t, X, Xy, X, ) =U(E), E =t + KX + KX, +.o+ K X+ &, 9)
Then by the second equality in Eq. (4), Eq. (8) can be turned into the following
fractional ordinary differential equation with respect to the variable &:
PU,,...U,,...c"D{U,,...,c“DU, kDU, ... kDU, ke DU, ..
keyDZu,,c*“D:*U,,...,c** DU, .k “D:“Uy,...) = 0. (10)
Step 2. Suppose that the solution of (10) can be expressed by a polynomial in

a

[DiC
G

) as follows:

il D:G., DG, 1 DIG,, .
Uj(f):aj,oJFZ[aj,i(é—) +bj,i(§_) l\/a(lJr_(é—)z)]'J=112'----ka (11)
where G=G(¢&) satisfies Eg. (1), o is an constant, and a;;,i=0,1,..,m
j=12,...,k are constants to be determined later. The positive integer m can be
determined by considering the homogeneous balance between the highest order
derivatives and nonlinear terms appearing in (10).
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Step 3. Substituting (11) into (10) and using (1), collecting all terms with the

same order of \/0'(1+ (—— DG )2) (—— f ) together, the left-hand side of (10) is

a

. ... D
converted into another polynomial in ( é

). Equating each coefficient of this

polynomial to zero, yields a set of algebraic equations for a;,,a;;,b;;,i=1,...,m,
j=12,..,k.

Step 4. Solving the equations in Step 3, and using (7), we can construct a
variety of exact solutions for Eq. (8).

4. Applications

In this section, we will apply the described method in Section 2 to some
fractional partial differential equations.

4.1. Space-time fractional Whitham-Broer-Kaup (WBK) equations

We consider the space-time fractional Whitham-Broer-Kaup (WBK)

equations [14]

Dfu+uDfu+D?v+ AD“u =0,

Dfv+D?(uv)— D *v+yD3*u =0,
In [14], the authors solved Egs. (12) by a proposed fractional sub-equation method
based on the fractional Riccati equation, and established some exact solutions for
them. Now we will apply the described method above to Egs. (12). To begin with,
we suppose u(x,t)=U(S&),v(x,t)=V (&), where &=kx+ct+<,. Then by use of
the second equality in (4), Egs. (12) can be turned into

O<a<l. (12)

c“DfU +k“UDZU +k“D2V + gk**DZ*U =0, )
c“DIV +k“Df (UV) - pk*“ DIV +yk** DU = 0,
Suppose that the solutions of Eqs (13) can be expressed by
+b (—— ; o(l+ _(
(14)

V(&) =¢,

where G=G(¢) satlsfles Eq. D).

Balancing the order between the highest order derivative term and nonlinear
term in Egs. (13), we can obtain m=1n=2. So we have
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U()= ao+31

,/ o(l+ —( 5 )%,
(15)
DG, 1,DIG,, DsG / 1 DG,
1 yT +0, ~) O'(1+;(T) )

Substituting (15) along with (1) into (13) and collecting all the terms with the

DG ‘G
same power of \/0'(1+ 1( é ) (—— é ) together, equating each coefficient to
U

zero, yields a set of algebraic equations. Solving these equations, yields:
Case 1:

al,a a 2 2 ﬂ
a, =—C“k”,a ==k B +7,b=b,c,=b’c(x -1),c, =0,
VB +y
¢, =K EAB 7 - =)0, = 0,0, =Dk (G + 7 + B) =BT

Bty
Case 2:
3, =-c"k",a,=0,h =h,c =—%bfa,cl=0,

k—2ab120_
:_2k20{ 2 ,d :o,d = ka y = .
(B +7).d, . =bk B, u 2F 1)
Case 3:

=—C“k”,a, = +2K*\/ B +y,b, =, C, = 2uk** (£ B° + v - BZ—¥),¢, =0,
C, =2k (BB +y-p°~y),d,=0,d,=0, = p.

Substituting the results above into (15), and combining with (7) we can
obtain the following exact solutions to the space-time fractional Whitham-Broer-
Kaup (WBK) equations.

From Case 1 and (7) we obtain:

When 1 <0,5°+y>0,
Csmh“ ‘fa cosh Y pHe”

al,a a 2 F(l a) F(l a)
U, (&) =—c“k* 2K J-u(B* +7)I — — ]
C,cosh——"— pe +C,sinh2>X—— pe”

I'l+a) I'l+a)
cC, sinh YH#E° | C, cosh gt
rl+ea) Ird+a).,

+b, |o{l-[ 1’}

C, cosh \/_‘)’Z +C, sinh \/_é

rl+a) rl+a)
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B
[ﬁz
C,sinh 7“”5+ C,cosh 7"‘19“

Vi(§) = b120'(i

—1)—k2“(iﬂ\/ﬁ2+7—ﬂ2—7)

sl rl+a) Frl+a)q.
C, cosh 7"5 ,sinh Nope"
rdl+a) Frl+ea) (16)
C,sinh FV(1+§) cosh 1_"(1!:5&)
+b Kk (FAIB2 + 7y + B~ i @
(+ ﬂ V4 ﬁ) xu[c cosh \/—5 i \/—5 ]
! rl+a ) rl+a)
C smhri"(lﬂg)+c coshri"(lﬁga)
ofl-[ — — 1’}
Clcosh7§+czsinh7§
rl+a) rd+ea)
—2a|2
where §:kx+ct+§0,,u:k zbla.
B +y
When #>0,8°+y>0,
—C,sin F*(/fzga)+ , COS F*(/l’zfa)
U, (&)= —ck £ k“Ju(B”+ 1)l “ =
C,cos \/;5 + C,sin \/75
Tl+a) rl+a)
—C,sin F\(/;::a) 2cosil_\(/lﬂ_:’w)
b, lo{+1 ¢ 2717y
C,cos ‘/_'f + C,sin \/;‘5
rl+a) rd+a)
2 ﬂ 2a 2 2
V(&) =bo(s D)+ Kk (EBNB Ty =B —7)
NBE+y
CCosin MHET ¢ cos NHE"
ul rl+a) rl+a),.
Ccos VHET ¢ in NHE"
rl+a) rl+a)
Cc,sin MHET ¢ s NHE"
bk BT+ 7 + FNul Lra) tira)
C,cos \/;(’Z +C, \/;5 (17)
rl+ea) T'l+a)
—-C,sin r\(/lﬂ—fa) » sr\(/lﬂ—fa)
of{l+][ aa aa I’}
C.cos VHE sin YuE
rl+ea) Tl+a)
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202
me§=W+d+Qﬂ=k2QGI
B +y
From Case 2 and (7) we obtain:
When <0,
Csinh Y hSy+ Caoosh YT
U3(§):*Cl}lkw+b1 of{l-|[ ]}
C,cosh Y— ue' +C,sinh M~ pe'
rd+a) Fl+a)
1 C,sinh r\’(lf -+ C, cosh F\/(_lﬁi)
Va(€) = = bio + 2k (B + y)ul — —
) C,cosh uet +C,sinh —Hg"
rd+a) rl+a)
/‘_'C MnhTTT%%;Y COShr(1+é;)
+b1kaﬂ 7/u[ ]
C,cosh Y— pet +C,sinh M~ pet
rdl+a) Frl+a)
C,sinh M~ ue' +C,cosh M pe'
o{l-[ Fri+a) ra+a)]}
C,cosh Y~ ue' +C,sinh Y pe' (18)
rd+a) Frl+a)
2a
where & =kx+ct+ ,:__£EL
° =)
When x>0,
_c,sin MHET ¢ s MHE”
U, (&) =-c“k* +b, [o{l+] FQ+a) r(1+a)]}
C, cos Jug +C,sin Juee
rl+a) rl+a)
1 —C,sin \/;ga +C2cosﬁ
Vi(€) = = blo —2k* (57 + p)ul F+a) r+a),
C1COS \/Zé C sin \/_é:
rd+a) rl+a)
-Cysin F\(/lzéa)JrCzCosr\(/l;‘fa)
+b1k’1ﬂ /7/—1[ \/7+aa \/7+aa ]
C,cos Ae + C,sin He
rl+a) rl+a)
ClSi”r\(/Ea)wzc"sr\(/Ea)
olt+l - 2y,
C,cos MHE ¢ sin NuE (19)
rl+a) rl+a)
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k—2ab120_
A2 +y)
From Case 3 and (7) we obtain:
When 1 <0,8*+y>0,

where & =kx+ct+¢&,, u=

C,sinh r“(_l/i‘fa)+czcosh FV(_lliéa)
Ug(é) = —ck” + 2k [~ u(B? + 1)l = o),
. o C,cosh Y éw inh N_#E"
(1+a) C.s F+a) (20)
Vo (&) =2uk?** (£ B\IB* +7y = B2 —y)=2K** (£ BB +7 - B> - )
C,sinh Vopg" , cosh N-pg”

1+ ) Irl+a)q,

ul — —
C, cosh 5 +C,sinh X—"—=— He"

a) Fl+a)

where §:kx+ct+§o.
When 1>0,5°+y>0.

—-C,sin F\(/f:ga) +C,cos F\(/f_fa)
Uo(&) = —c k™ £ 2k Ju(B? + 1) 2 @),
. C, cos \/;éw in \/;511
YTUTIl+ ) YT T+ a) 21)
V(&) =2uk? (£ B2 +y — B2 =)+ 2K (£ BB* +y - B2 - )
n \/;c“'w +C cosﬁ

Fl+a) ° T@+a)qe

ul -
C, cos ‘/_g +C sin\/ﬁiég

rl+a) 2 rl+a)

where & =kx+ct+&,.

Remark 1. Compared with the results in [14], the established solutions in Egs. (16)-
(21) are new exact solutions for the space-time fractional Whitham-Broer-Kaup
(WBK) equations, and have not been reported by other authors in the literature.

4.2. Space-time fractional Fokas equation

We consider the space-time fractional Fokas equation [15]
20 4o 4o a a 20 20
a q a3an!+ aSqua 126qag+12q a qa 6 aa qa
A oo aC o o oxg X0 OYy'0Y,
In [15], the authors solved Eq. (22) by a fractional Riccati sub-equation method,
and obtained some exact solutions for it. Now we will apply the described method

=0,0<a<1.(22)




A new approach for finding exact solutions of fractional partial differential equations 143

in Section 3 to Eq. (22).

Suppose q(x,t)=U(SE), where &=ct+kx +k,x, +1Ly, +L,Yy, + &,k Kk, 1,,1,,&
are all constants with k,k,,1,,1,,c#0. Then by use of the second equality in Eq.
(4), Eq. (22) can be turned into

4K’ D§"U kK D;‘“U +kK” D;‘“U +12kf‘k2“(D§‘U)2 +12kl“k2“UD§“U —6l1; D§“U =0.(23)
Suppose that the solution of Eq. (23) can be expressed by
wa=%+imm%GrHuQGdehi« S0 (24)
i=1 G G H

where G =G(¢) satisfies Eqg. (1). By Balancing the order between the highest

order derivative term and nonlinear term in Eq. (23), we can obtain m=2. So we
have

D¢
G

DG

U(&) =2, +a( G

)+a,(

DIG 1 DG DIG 1 DG

é )2+b1\/0(1+;( é )?) +b,( é )\/a(1+;(§T)2)-
(25)

Substituting (25) along with (1) into (23) and collecting all the terms with the

1 ,DIG,,, DIG ) -
same power of 0(1+_(T) )(T) together, equating each coefficient to
U

zero, yields a set of algebraic equations. Solving these equations, yields:
Case 1:

. 0Kgbior+ 207 (k37 —kP) + 3Kyl — k7K “If Iy
’ 6k — ;") |

=0,

k2" —kZ“ ab’c
a,=——=2b=0b,=b,, u=—-——"22-—.
2 5 by , = U (k2 — k22
Case 2:
AKKS g1 — AKKS 11— 2¢7K S + 31717 a a
a, = L QMK K H 1 12 8, = k2 — K2, 1= .

bk ke

Substituting the result above into Eq. (25), and combining with (7) we can
obtain the following exact solutions to Eq. (22).

From Case 1 and (7) we obtain:

When 1 <0,

U, (&) = J0Ks i+ 207 0 ki) + 3Ky 3Gk
1 (k" ki)
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e 12 C, smh ‘/_5 +C, cosh \/_‘fa
- kf)[ +a) T(1+a)q
2 C, cosh ‘/75 +C,sinh ne
I'l+ea) I'l+a)
C,sinh ‘/—5 C, cosh ﬁf& C,sinh ‘/—5 C, cosh ‘/_fa
b, \/:1[ (+a) F(l+a)] o{1+] ra+ a) F(1+a)] 3
C, cosh ‘/__5 +C,sinh ﬁf C,cosh ‘/_5 C,sinh ‘/_—5
I'l+ea) I'l+ea) 1+ a) I'l+ea)
(26)
where &=ct+kXx +k,x, +Ly, +Ly,+¢& —ﬂ
- 1X1 272 1yl 2y2 0’lu - (klza _k22a)2 '
When 1 >0,
U, () = 10k;‘bza+2c"(k2; _l(l 2 +3I:£Ifl2“ =3k, 7k, “I 1
(kz k1 _kz )
e L2e  —CySIN \/Zéga +C, cos \/Zéw
+(k -k; Vil I'l+a) F(1+a)]2
2 C, cos \/;§ +C,sin \/Zf
I'l+ea) I'l+a)
Qs'nr({g ) C:zcos’rJa;%m) o r({g ) SF({QZ )
+b2@[ ) +aa ] O'{1+[ 3 A ] }1 (27)
C, cos ‘/_f n ‘/;98 C, cos ‘/;§ sin ‘/_5
Il+a) ° I(+a) Il+a) ° T(+a)
4b?
where &=ct+kx +k,x, +Ly, +1,y, +&, 1 :W.
From Case 2 and (7) we obtain:
When 1 <0,
AK7KS g1 — AK K 0 —2¢7K S + 31715
U,(&) = ok
C,sinh 11/(1_5) , cosh Il/(l_ﬁéw)
~(kE — k)l = 2y
C, cosh ‘/_§ +C, sinh \/_ég
+a) Fl+a)

(28)
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where & =ct+kx +kx, + Ly, +Ly, +&,.
When x>0,
0,y K K -2
4 Bk, ky
—Clsin\/;7§+c2 cos\/pig
rl+a) T(l+a)p

C, COSM+C2 sinM
I'l+ea) I'l+ea)

(K2 k)

(29)
where & =ct+kx +K,x, +Ly, +Ly, +&,.

Remark 2.

As one can see, the established solutions for the space-time fractional Fokas
equation above are different from the results in [15], and are new exact solutions
so far to our best knowledge.

5. Conclusions

Based on a new ansatz, we have proposed a new fractional sub-equation
method for solving FPDEs. As applications, the space-time fractional Whitham-
Broer-Kaup (WBK) equations and the space-time fractional Fokas equation are
solved successfully, and new exact solutions for them are established. Being
concise and powerful, the proposed method can be applied to solve other
fractional partial differential equations.
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