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In this paper, by introducing a new ansatz, a new fractional sub-equation 
method is proposed for finding exact solutions of fractional partial differential 
equations (FPDEs) in the sense of modified Riemann-Liouville derivative.  For 
illustrating the validity of this method, we apply it to the space-time fractional 
Whitham-Broer-Kaup (WBK) equations and the space-time fractional Fokas 
equation. As a result, some new exact solutions for them are successfully 
established.. 
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1. Introduction 

Recently, Fractional differential equations have been the focus of many 
studies due to their frequent appearance in various applications in physics, 
biology, engineering, signal processing, systems identification, control theory, 
finance and fractional dynamics.  Among the investigations for fractional 
differential equations, research for seeking exact solutions and approximate 
solutions of fractional differential equations is a hot topic. Many powerful and 
efficient methods have been proposed so far (for example, see [1-12]). Using 
these methods, solutions with various forms for some given fractional differential 
equations have been established. 

In this paper, we propose a new fractional sub-equation method to establish 
exact solutions for fractional partial differential equations (FPDEs). The fractional 
derivative is defined in the sense of modified Riemann-Liouville derivative by 
Jumarie [13]. This method is based on  the following fractional ODE: 

2 ( ) ( ) 0, 0,D G Gα
ξ ξ μ ξ μ+ = ≠                                                          (1) 

where 2 ( )D Gαξ ξ  denotes the modified Riemann-Liouville derivative of orde 
α for ( )G ξ with respect toξ . 

The definition and some important properties for the Jumarie's modified 
Riemann-Liouville derivative of order α  are listed as follows [13]: 
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[ ( )] [ ( )] ( ) [ ( )]( ( )) .t g t gD f g t f g t D g t D f g t g tα α α α′ ′= =                            (4) 
We organize this paper as follows. In Section 2, we derive the expression for 

( )
( )

D G
G

α
ξ ξ
ξ

 related to Eq. (1). In Section 3, we give the description of the fractional 

sub-equation method for solving FPDEs. Then in Section 4 we apply this method 
to establish exact solutions for the space-time fractional Whitham-Broer-Kaup 
(WBK) equations and the space-time fractional Fokas equation. Some conclusions 
are presented at the end of the paper. 

2. The general expression for  
( )

( )
D G

G

α
ξ ξ
ξ

 

In order to obtain the general solutions for Eq. (1), we suppose ( ) ( )G Hξ η= , 

and a nonlinear fractional complex transformation 
(1 )

αξη
α

=
Γ +

. Then by Eq. (2) 

and the first equality in Eq. (4), we have ( ) ( ) ( ) ( )D G D H H D Hα α α
ξ ξ ξξ η η η η′ ′= = = . 

So Eq. (1)  can be turned into the following second ordinary differential equation 
( ) ( ) 0.H Hη μ η′′ + =                                                                             (5) 

By the general solutions of Eq. (5) we have 
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where 1 2,C C  are arbitrary constants. 
         Furthermore, we obtain  
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3. Description of the fractional sub-equation method  

In this section we describe the main steps of the fractional sub-equation 
method for finding exact solutions of FPDEs.  

Suppose that a fractional partial differential  equation, say in  the 
independent variables 1 2, , ,..., nt x x x , is given by 

1 11 1 1 1( ,..., ,..., ,..., , ,..., , ,...,
nk t t k x x k xP u u D u D u D u D u D uα α α α α                                   

1

2 2 2
1 1, ,..., , ,...) 0

nx k t t k xD u D u D u D uα α α α = ,                                                  (8) 

where 1 2( , , ,..., ), 1,...,i i nu u t x x x i k= =  are unknown functions, P  is a polynomial 
in iu  and their various partial derivatives including fractional derivatives. 

Step 1. Suppose that  
1 2 1 1 2 2 0( , , ,..., ) ( ), ... .i n i n nu t x x x U ct k x k x k xξ ξ ξ= = + + + + +                    (9) 

Then by the second equality in Eq. (4),  Eq. (8) can be turned into the following 
fractional ordinary differential equation with respect to the variable ξ : 

i
1 1 1 1 1 1( ,..., ,..., ,..., , ,..., , ,...,k k k nP U U c D U c D U k D U k D U k D Uα α α α α α α α α α

ξ ξ ξ ξ ξ            
2 2 2 2 2 2

1 1 1, ,..., , ,...) 0.n k kk D u c D U c D U k D Uα α α α α α α α
ξ ξ ξ ξ =                             (10) 

Step 2. Suppose that the solution of (10) can be expressed by a polynomial in 

( )
D G

G

α
ξ  as follows: 

1 2
,0 , ,

1

1( ) [ ( ) ( ) (1 ( ) )], 1,2,..., ,
jm

i i
j j j i j i

i

D G D G D G
U a a b j k

G G G

α α α
ξ ξ ξξ σ

μ
−

=

= + + + =∑  (11) 

where ( )G G ξ=  satisfies Eq. (1), σ  is an constant, and , , 0,1,...,j ia i m= , 

1, 2,...,j k=  are constants to be determined later. The positive integer m  can be 
determined by considering the homogeneous balance between the highest order 
derivatives and nonlinear terms appearing in (10). 
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Step 3. Substituting (11) into (10) and using  (1), collecting all terms with the 

same order of 21(1 ( ) )( )
D G D G

G G

α α
ξ ξσ

μ
+   together, the left-hand side of (10) is 

converted into another polynomial in ( )
D G

G

α
ξ . Equating each coefficient of this 

polynomial to zero, yields a set of algebraic equations for ,0 , ,, , , 1,..., ,j j i j ia a b i m=  

1, 2,...,j k= . 
Step 4. Solving the equations  in Step 3, and  using (7), we can construct a 

variety of exact solutions for Eq. (8). 

4. Applications  

In this section, we will apply the described method in Section 2 to some 
fractional partial differential equations. 

4.1. Space-time fractional Whitham-Broer-Kaup (WBK) equations  

We consider the space-time fractional Whitham-Broer-Kaup (WBK) 
equations [14] 
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                                    (12) 

In [14], the authors solved Eqs. (12) by a proposed fractional sub-equation method 
based on the fractional Riccati equation, and established some exact solutions for 
them. Now we will apply the described method above to Eqs. (12). To begin with, 
we suppose  ( , ) ( ), ( , ) ( )u x t U v x t Vξ ξ= = , where 0kx ctξ ξ= + + . Then by use of 
the second equality in  (4), Eqs. (12) can be turned into 
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Suppose that the solutions of Eqs. (13) can be expressed by 
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where ( )G G ξ=  satisfies Eq. (1).  
      Balancing the order  between the highest order derivative term and nonlinear 
term in Eqs. (13), we can obtain 1, 2m n= = . So we have 
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Substituting (15) along with (1) into (13) and collecting all the terms with the 

same power of 21(1 ( ) )( )
D G D G

G G

α α
ξ ξσ

μ
+  together, equating each coefficient to 

zero, yields a set of algebraic equations. Solving these equations, yields: 
Case 1: 
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2 2 2 2

0 1 1 1 0 1, 2 , , 2 ( ), 0,a c k a k b b c k cα α α αβ γ μ β β γ β γ= − = ± + = = ± + − − =
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Substituting  the results above into  (15), and  combining with   (7) we can 
obtain the following exact solutions to the space-time fractional Whitham-Broer-
Kaup (WBK) equations. 

From Case 1 and  (7) we obtain: 
When 20, 0μ β γ< + > , 

1 2
2

1

1 2

sinh cosh
(1 ) (1 )( ) ( )[ ]

cosh sinh
(1 ) (1 )

C C
U c k k

C C

α α

α α α
α α

μξ μξ
α αξ μ β γ

μξ μξ
α α

− −
+

Γ + Γ += − ± − +
− −

+
Γ + Γ +

 

1 2
2

1

1 2

sinh cosh
(1 ) (1 ){1 [ ] }

cosh sinh
(1 ) (1 )

C C
b

C C

α α

α α

μξ μξ
α ασ

μξ μξ
α α

− −
+

Γ + Γ ++ −
− −

+
Γ + Γ +

                       



140                                                             Qinghua Feng 

    

2 2 2 2
1 2

1 2
2

1 2

1 2
2

1

1

1 2

1

( 1) ( )

sinh cosh
(1 ) (1 )[ ]

cosh sinh
(1 ) (1 )

sinh cosh
(1 ) (1 )( ) [ ]

cosh sinh
(1 ) (1 )

si
{1 [

( ) b k

C C

C C

C C
b k

C C

V

C

α

α α

α α

α α

α
α α

βσ β β γ β γ
β γ

μ ξ μ ξ
α αμ

μ ξ μ ξ
α α

μ ξ μ ξ
α αβ γ β μ

μ ξ μ ξ
α

ξ

α

σ

± − − ± + − −
+

− −
+

Γ + Γ +
− −

+
Γ + Γ +

−

=

−
+

Γ + Γ ++ + + −
− −

+
Γ + Γ +

−

∓

2
2

1 2

nh cosh
(1 ) (1 ) ] } ,

cosh sinh
(1 ) (1 )

C

C C

α α

α α

μ ξ μ ξ
α α

μ ξ μ ξ
α α

− −
+

Γ + Γ +
− −

+
Γ + Γ +

               (16) 
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From Case 2 and  (7) we obtain: 
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From Case 3 and  (7) we obtain: 
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where 0.kx ctξ ξ= + +  

 
Remark 1. Compared with the results in [14], the established solutions in Eqs. (16)-
(21) are new exact solutions for the space-time fractional Whitham-Broer-Kaup 
(WBK) equations, and have not been reported by other authors in the literature. 

4.2. Space-time fractional Fokas equation  

We consider the space-time fractional Fokas equation [15] 
2 4 4 2 2

3 3
1 1 2 2 1 1 2 1 2 1 2

4 12 12 6 0,0 1.q q q q q q qq
t x x x x x x x x x y y

α α α α α α α

α α α α α α α α α α α α α∂ ∂ ∂ ∂ ∂ ∂ ∂
− + + + − = < ≤

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
(22) 

In [15], the authors solved Eq. (22) by a fractional Riccati sub-equation method, 
and obtained some exact solutions for it. Now we will apply the described method 
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in Section 3 to Eq. (22). 
 Suppose  ( , ) ( )q x t U ξ= , where 1 1 2 2 1 1 2 2 0 1 2 1 2 0, , , , ,ct k x k x l y l y k k l lξ ξ ξ= + + + + +  

are all constants with 1 2 1 2, , , , 0k k l l c ≠ . Then by use of the second equality in Eq. 
(4), Eq. (22) can be turned into 
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1 1 2 2 1 1 2 1 2 1 24 12 ( ) 12 6 0.c k D U k k D U k k D U k k D U k k UD U l l D Uα α α α α α α α α α α α α α α α α α

ξ ξ ξ ξ ξ ξ− + + + − = (23) 
Suppose that the solution of Eq. (23) can be expressed by 

1
0

1 21[ ( ) ( ) (1 ( ) )],( )
m

i i
i i

i

D G D G D G
a b

G G
U a

G

α α α
ξ ξ ξσξ

μ
−

=

= + + +∑                              (24) 

where ( )G G ξ=  satisfies Eq. (1). By Balancing the order  between the highest 
order derivative term and nonlinear term in Eq. (23), we can obtain 2m= . So we 
have 

2 2 2
2 10 1 2

1 1( ) ( ) (1 ( ) ) ( ) (1 ( ) )) .(
D G D G D G D G D G

a b bU a
G G G G

a
G

α α α α α
ξ ξ ξ ξ ξσ σ

μ μ
ξ + + + += + +

  (25) 
Substituting (25) along with (1) into (23) and collecting all the terms with the 

same power of 21(1 ( ) )( )
D G D G

G G

α α
ξ ξσ

μ
+  together, equating each coefficient to 

zero, yields a set of algebraic equations. Solving these equations, yields: 
Case 1: 

2 2 2 2
2 2 2 1 1 1 2 2 1 1 2

0 12 3
2 1 2

10 2 ( ) 3 3 , 0,
6( )

k b c k k k l l k k l la a
k k k

α α α α α α α α α α α

α α α

σ −+ − + −
= =

−
 

2 2 2
1 2 2

2 1 2 2 2 2 2
1 2

4, 0, , .
2 ( )

k k ba b b b
k k

α α

α α

σμ−
= = = =

−
 

Case 2: 
3 3

2 21 2 1 2 1 1 2
0 2 1 2

1 2

4 4 2 3 , , .
6

k k k k c k l la a k k
k k

α α α α α α α α
α α

α α

μ μ μ μ− − +
= = − =  

 
Substituting  the result above into Eq. (25), and  combining with (7) we can 

obtain the following exact solutions to Eq. (22). 
From Case 1 and  (7) we obtain: 
When 0μ < , 

2 2 2 2
2 2 2 1 1 1 2

1
2 1 1 2

2 3
2 1 2

( 10 2 ( ) 3 3
6(

)
)

k b c k k k l l k k l
k

U l
k k

α α α α α α α α α α α

α α α

σξ
−+ − + −

−
=                                      
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1 22 2
21 2

1 2

sinh cosh
(1 ) (1 )( ) [ ]

2
cosh sinh

(1 ) (1 )

C C
k k

C C

α α

α α

α α

μξ μξ
α αμ

μξ μξ
α α

− −
+

− Γ + Γ +−
− −

+
Γ + Γ +

                                            

1 2 1 2
2

2

1 2 1 2

sinh cosh sinh cosh
(1 ) (1 ) (1 ) (1 )[ ] {1 [ ] },

cosh sinh cosh sinh
(1 ) (1 ) (1 ) (1 )

C C C C
b

C C C C

α α α α

α α α α

μξ μξ μξ μξ
α α α αμ σ
μξ μξ μξ μξ
α α α α

− − − −
+ +

Γ + Γ + Γ + Γ ++ − +
− − − −

+ +
Γ + Γ + Γ + Γ +

 

(26) 

where 
2
2

1 1 2 2 1 1 2 2 0 2 2 2
1 2

4, .
( )

bct k x k x l y l y
k kα α

σξ ξ μ= + + + + + =
−

 

When 0μ > , 
2 2 2 2

2 2 2 1 1 1 2
2

2 1 1 2
2 3

2 1 2

( 10 2 ( ) 3 3
6(

)
)

k b c k k k l l k k l
k

U l
k k

α α α α α α α α α α α

α α α

σξ
−+ − + −

−
=                                      

1 22 2
21 2

1 2

sin cos
(1 ) (1 )( ) [ ]

2
cos sin

(1 ) (1 )

C C
k k

C C

α α

α α

α α

μξ μξ
α αμ

μξ μξ
α α

− +
− Γ + Γ ++

+
Γ + Γ +

                                            

1 2 1 2
2

2

1 2 1 2

sin cos sin cos
(1 ) (1 ) (1 ) (1 )[ ] {1 [ ] },

cos sin cos sin
(1 ) (1 ) (1 ) (1 )

C C C C
b

C C C C

α α α α

α α α α

μξ μξ μξ μξ
α α α αμ σ

μξ μξ μξ μξ
α α α α

− + − +
Γ + Γ + Γ + Γ ++ +

+ +
Γ + Γ + Γ + Γ +

 (27) 

where 
2
2

1 1 2 2 1 1 2 2 0 2 2 2
1 2

4, .
( )

bct k x k x l y l y
k kα α

σξ ξ μ= + + + + + =
−

 

From Case 2 and  (7) we obtain: 
When 0μ < , 

3 3
1 2 1 2 1 1 2

1 2
3

4 4
6

( 3) 2U k k k k c k l l
k k

α α α α α α α α

α α

μ μξ − +
=

−                                                         

1 2
2 2 2

1 2

1 2

sinh cosh
(1 ) (1 )( ) [ ]

cosh sinh
(1 ) (1 )

C C
k k

C C

α α

α α
α α

μξ μξ
α αμ

μξ μξ
α α

− −
+

Γ + Γ +− −
− −

+
Γ + Γ +

                                            

(28) 
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where 1 1 2 2 1 1 2 2 0.ct k x k x l y l yξ ξ= + + + + +  

When 0μ > , 
3 3
1 2 1 2 1 1 2

1 2
4

4 4
6

( 3) 2U k k k k c k l l
k k

α α α α α α α α

α α

μ μξ − +
=

−                                                        

1 2
2 2 2

1 2

1 2

sin cos
(1 ) (1 )( ) [ ]

cos sin
(1 ) (1 )

C C
k k

C C

α α

α α
α α

μξ μξ
α αμ

μξ μξ
α α

− +
Γ + Γ ++ −

+
Γ + Γ +

                                            

(29) 
where 1 1 2 2 1 1 2 2 0.ct k x k x l y l yξ ξ= + + + + +  

 
Remark 2.  
As one can see, the established solutions for the space-time fractional Fokas 
equation above are different from the results in [15], and are new exact solutions 
so far to our best knowledge. 

5. Conclusions 

Based on a new ansatz, we have proposed a new fractional sub-equation 
method for solving FPDEs.  As applications, the space-time fractional Whitham-
Broer-Kaup (WBK) equations and the space-time fractional Fokas equation are 
solved successfully, and new exact solutions for them are established. Being 
concise and powerful, the proposed method can be applied to solve other 
fractional partial differential equations. 
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