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A BINOMIAL MOMENT APPROXIMATION SCHEME FOR
EPIDEMIC SPREADING IN NETWORKS

Yilun SHANG?

Epidemiological network models study the spread of infectious diseases
through a population of individuals. In this paper, we study a moment
approximation scheme for the SIS (susceptible-infected-susceptible) epidemics
spreading on configuration model networks via an empirical binomial distribution
with time dependent parameters describing the number of infectives during the
outbreaks. Based on this assumption, the evolution equations of higher order
moments are expressed in terms of lower order moments. Numerical examples are
provided to illustrate the availability of our approximation method.
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1. Introduction

Complex network has emerged as a prominent field in complex system
research, and network models for disease propagation in human society have been
used to understand many problems in epidemiology [1, 4, 9, 13, 15, 20, 21]. The
threshold of the infectivity in the paradigmatic susceptible-infected-susceptible
(SIS) model, for example, exhibits distinct phenomena for different network
topologies [3, 17, 24]: while regular and random networks possess a non-zero
epidemic threshold, that is a critical value of transmission probability under which
the disease ultimately dissipates, such threshold disappears asymptotically in
scale-free networks. A common approach to describe the dynamic behavior of the
epidemic dynamics is by a Kolmogorov equation (or master equation) that
governs the time evolution of the joint probability function of the underlying
processes and naturally leads to Markovian models [22]. However, for a network

with N nodes, the state space is much larger than N (e.g., with 2" elements for SIS
epidemics). Solving this system becomes a formidable task, especially when
dealing with large-scale networks.

To address this problem, pairwise-type approximate models are proposed
and heavily used to capture the epidemic dynamics in networks [5, 6, 7, 8, 11].
The classic pairwise model [8] relies on a set of moments equations for the
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expected values of individuals of different state (e.g., susceptible or infected)
which depends on the expected values of individuals of different pair states with
higher order moments replaced by appropriate chosen functions of lower-order
moments (e.g., singles and pairs). The resulting approach is usually referred to as
the moment closure/approximation method, which produces a self-contained
system of ordinary differential equations (ODEs) whose solution provides
approximate values for the moments of the epidemic processes. The similar
thinking has been implemented earlier in a wider context of biological population
processes and biochemical systems (see e.g. [2, 18, 19, 26]). Other approximate
schemes include the probability generating function formalism [25] and the
effective degree type models [12].

Recently, a novel moment closure is introduced in [10] based on the
empirical observations that the number of infectives in SIS epidemics is well
described by a binomial distribution with time dependent parameters. By using an
a priori binomial distribution, the difference between the exact system from the
solution of the approximate model is ©(N") compared to “\"") obtained via
classic moment closure at the level of triples used for pairwise models. Note that
the population considered therein is modeled by a fully connected graph (or
complete graph), which limits the application of the proposed methodology.

In this work, we investigate an SIS epidemic process on a random graph
with arbitrary degree distribution. As in [10] we derive the ODE-based
approximate model capturing the moments of the number of infectives at all times
combined with the empirical binomial distribution with time dependent
parameters. We show that the proposed model works well when the underlying
network is generated by a configuration model [14] with
homogeneous/heterogeneous degree distributions via numerical simulations.

The rest of the paper is organized as follows. In Section 2, we present the
SIS model on a configuration model graph and its Markov chain representation. In
Section 3, we derive the binomial moment closure. Finally, we discuss some
possible improvements in the closing section.

2. The model

In this section, we introduce the configuration model graphs and describe
the transmission of SIS epidemics on such graphs with a dynamical systems type
approach.

A configuration model network is static with a known degree distribution
[14]. We create a configuration model network with N nodes as follows. Suppose

we are given i.i.d. random variables dy, -+ dxith distribution P(k) (k=0,...,N)
that represent the degrees of each node. To the node i are associated “:stubs (half-
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edges). Once all nodes are assigned stubs, we choose two open stubs uniformly at
random and pair them together to form an edge. We define
N

G(2) =S Plk)zk,
2 (1)

the probability generating function of the degree distribution. So the average
degree is <k>=G'(1), and the average number of nodes within 2-hop distance of a
node is <k’>=G'(1)+G"(1) [16]. A sample configuration model network is shown
in Fig. 1.

o®

Fig. 1. A sample configuration model network with 60 nodes. The degrees are chosen
using P(1)=P(3)=0.5. Thus, G(z)=(z*+2)/2.

In this context, the population for the prototypical SIS model consists of N
nodes, whose states can be either susceptible or infected. This model is
customarily used to describe the progression of infectious diseases conferring
temporary immunity, such as common cold. An infected node spreads the disease

to each one of its susceptible contacts at rate j while it heals at a rate 7 with all
events occurring independently of each other. Denote by S and | the sizes of the
set of susceptible and infected nodes, respectively. Then N=S+I at any given time.
The number of infectives for the model is approximately described by a
continuous time Markov chain on the state space
k— k+1 atrate Dby,
k— k—1 atrate d.
ke (2)

where we propose to use
BE(N —k 4',1,'2"}
% and  d, =k,
e ©

f)'y\. =
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for k=0,...,N. While the & — k—ltransition is itself a spontaneous process, the

transition from k — k + 1depends on the structure of the population and the
contact patterns of individuals. Note that if the underlying contact network is a
fully connected graph (i.e., pn-1=1), it gives rise to b = BR(N — k) which is
the situation studied in [10, 23]. According to the above comments, the factor
<k®>/(<k>(N-1)) in (3) encodes a density dependent “‘expansion" property
averaged over the ensemble and the infectives and susceptibles are assumed to be
randomly distributed on the network.

Although quite straightforward, this extension provides an avenue to
address epidemic spreading in general network settings, such as scale-free degree
distributions, community structure and small-world phenomenon, which set them
apart from simpler networks such as fully connected graphs. For example, the
scale-free degree distribution is characteristic of many real-world networks,
including social and computer networks on which human diseases and computer
viruses propagate [15].

The computational efficiency of our approach will be shown in the next
section. Let px(t) be the probability that the system is in state k at time t. The
Kolmogorov forward equation for this process is

Pre(t) = br—1pk—1 — (b + di) Pk + dig1 Pt ()
with ““birth" rate by and "“death” rate dy given by (3), and additionally, b.;=dn+1=0.

3. Binomial moment approximation

In this section, we derive the moment equations and close them based on
the empirical observation that py(t) is well described by a binomial distribution
[10].

For an integer i= 1, define
N
Xi(t) = kpi(t)
5)

be the ith moment associated with the above process (2). By using the
Kolmogorov equation (4), the equation for the first moment can be derived as
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N
Xl(f) = Z(!.'b;.,lm.,l — kb — kdppr + kdp1prsr)
k=0

N
= Z(m —di)pr
k=0
= Hi_(ﬂn.\r — ﬂn ) — li) Pk
£\ (k)(N = 1)
BEHN N By L
- QwaU*)A“TMNfUM‘
- - - - - (6)
Similarly, the equation for the second moment is given by
N
Xo(t) = > _((2k+ 1)bx — (2k — Dyde)pr
k=0
BN -1) i 20(k%y
B ({;Nn “)M%NNUM
B{EHN
+ (7. +7v) Xy
(7)

N ATAE,
Let “i(t) = 2kmo(F/N)'Pe(t) for i=1,2,.... Therefore, (6) and (7) can be
rewritten in terms of x;'s as

P BBHN N B3N

s (BURCN - N 20(3N BU2 v\
POE Uy ) me e ) (g

Note that the above system is not self-contained since the second moment
(x2) relies on the third moment (x3). In theory, the dynamics for x3 can be
evaluated by a differential equation similar to the ones above, which requires
evaluation of higher-order moments [8]. Now we employ the empirical
observation that the distribution of the infectives are given by a binomial
distribution Bin(n, p), and hence the parameters n and p can be expressed by [10]
e and n = Xi
X, X+ X2 Xy (10)

The third moment can then be recast in terms of the first and second moment [10]
Xy = np+3nn—1p*+nn —1)(n-2)p*
2X7 .
= X—,Q — Xo— X1 Xo + X7
o (11)

and

}.):1—|—j{l—

which is equivalent to
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2 2
:{‘_‘3 et ;}2 — "*}"]_"IIQ + }17_)2
T :\" (12)
The closure (12) together with (8) and (9) provides a self-contained
system, whose solution gives approximate values for the moments for the SIS

process. In general, the expected number of infectives is given by

N
E[I(t)] =" kp(t) = Xq(t) = Nay ().
k=0 (13)

We demonstrate in Fig. 2 a comparison of theoretical results with Monte-Carlo
stochastic simulations. The population size is taken as N=10° and 10 randomly
chosen nodes are infected at the initial state for all the simulations. The results
show good agreement for the approximate system (except that we have made time
shifts for simulations due to stochastic effects early on in the epidemic).
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Fig. 2. Plot of fraction infected E[I(t)]/N against time based on simulation and binomial

closures (dashed curves) in configuration model networks of 10% nodes with F=16and 7 =1
Simulations are conducted for degenerate distribution: P(4)=1 (squares), bimodal distribution:
P(2)=P(4)=0.5 (circles), Poisson distribution with <k>=10 (diamonds), and truncated power law

distribution: P(k)=0.673k %™ for 1< k= 20 (triangles).

4. Discussion

We have presented a framework which allows us to make some analytical

headway in deriving low-dimensional approximate models applicable in network
settings. The moment closure method is based on an a priori assumption about the
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distribution of the infectives. Numerical results show good approximation for
epidemic spreading on a range of configuration model networks.

The network models studied here have no degree correlations, namely the
probability that an edge arrives at a node of degree k is proportional to kP(k). If a
network shows assortative/disassortative mixing (i.e., a tendency for high-degree
nodes to connect preferentially to high/low-degree nodes), it would be desirable to
refine the above model in order to obtain an improved approximation.
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