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UPPER SETS IN RESIDUATED LATTICES
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In this paper, we investigate several properties of upper sets in residu-
ated lattices and study the connection between filters and upper sets in residuated
lattices. At last, the notion of Krull dimension of a residuated lattice is introduced.
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1. Introduction

Residuated lattices, introduced by Ward and Dilworth in [12], include im-
portant classes of algebras such as BL-algebras, introduced by Hájek as the alge-
braic counterpart of Basic Logic [3], and MV -algebras, the algebraic setting for
Lukasiewicz propositional logic[2].

The structure of the paper is as follows: In section 2 of the article we recall
some definitions and facts about residuated lattices that we use in the sequel. In
section 3, some properties of upper sets in connections with filters over residuated
lattices is studied. This fact helps us to study the notion of Krull dimension of a
residuated lattices is introduced in the last section.

2. Preliminaries

A residuated lattices ([9], [12]) is an algebra A = (A,∧,∨, ∗,→ 0, 1) with four
binary operations ∧, ∨, ∗, → and two constants 0,1 such that:
(LR1) A = (A,∨,∧, 0, 1) is a bounded lattice,
(LR2)A = (A, ∗, 1) is a commutative monoid,
(LR3) ∗ and → form a adjoint pair, i.e,

a ∗ c ≤ b if and only if c ≤ a → b, for all a, b, c ∈ A,
A residuated lattices A, is called a G(RL)-algebra if x2 = x, for all x ∈ A

where x2 = x ∗ x [13].

Lemma 2.1.[8,11] In any residuated lattices A, the following relations hold for all
x, y, z ∈ A:
(1) x ∗ y ≤ x, y,
(2) 1 → x = x,
(3) x → x = 1,
(4) x ≤ y → x,
(5) x ∗ (x → y) ≤ y,
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(6) x ≤ (y → (x ∗ y)),
(7) x ≤ y if and only if x → y = 1,
(8) x → (y → z) = (x ∗ y) → z = y → (x → z),
(9) If x ≤ y then z → x ≤ z → y and y → z ≤ x → z,
(10) y ≤ (y → x) → x,
(11) y → x ≤ (z → y) → (z → x),
(12) x → y ≤ (y → z) → (x → z),
(13)(x → y) ∗ (y → z) ≤ x → z.
(14) (x ∨ y) → z = (x → z) ∧ (y → z).

In [9] there has been defined a filter of a residuated lattice to be a nonempty
subset F of A such that (i) a ∗ b ∈ F , for all a, b ∈ F and (ii)a ≤ b and a ∈ F imply
b ∈ F . A deductive system of a residuated lattice A is a nonempty subset D of A
such that (i)1 ∈ D and (ii) If x ∈ D and x → y ∈ D, then y ∈ D [7]. Note that a sub-
set F of a BL-algebra A is a deductive system of A if and only if F is a filter of A [9].

Definition 2.2. [13] A subset F of residuated lattice A is called
(1) a positive implicative filter of A if it 1 ∈ F and x → (y → z) ∈ F and x → y ∈ F

imply x → z ∈ F ,

(2) a G-filter if it is a filter of A that satisfies the condition x2 → y ∈ F implies
x → y ∈ F ,

(3) a Boolean filter of A if it is a filter of A that satisfies the condition x ∨ x
′ ∈ F ,

for all x, y ∈ A, where x
′
= x → 0.

Theorem 2.3. [13] In any residuated lattice A, the following assertions hold:

(1) Let F be a subset of A. Then F is a positive implicative filter of A if and only
if F is a G-filter of A,

(2) A is a G(RL)-algebra if and only if {1} is a G-filter of A,

(3) A is a Boolean algebra if and only if every filter of A is a Boolean filter of A if
and only if x = (x → y) → x, for all x, y ∈ A.

(4) Let F be a subset of A. Then F is a Boolean filter of A if and only if (x → y) →
x ∈ F implies x ∈ F , for all x, y ∈ A.

Definition 2.4. [6,11] Let X ⊆ A. The filter of A generated by X will be denoted
by < X >. We have that < ∅ >= {1} and < X >= {a ∈ A | x1 ∗ x2 ∗ ...xn ≤
a, for some n ∈ N∗ and some x1, x2, ..., xn ∈ X} if ∅ ̸= X ⊆ A. For any a ∈ A,
< a > denotes the principal filter of A generated by {a}. Then < a >= {b ∈ A |
an ≤ b, for some n ∈ N∗}.

Definition 2.5. [5] A Generalized Tarski algebra (GT -algebra, for short) is an
algebra (A, →, 1) with a binary operation →, and a constant 1 such that:
(T1)(∀a ∈ A) (1 → a = a) ,
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(T2) (∀a ∈ A) (a → a = 1),
(T3) (∀a, b, c ∈ A)(a → (b → c) = (a → b) → (a → c)).

Definition 2.6.[4] (1) A relatively pseudocomplemented lattice is an algebra (A,∧,∨,⇒
, 1) where (A,∧,∨) is a lattice with greatest element and any element is relatively
pseudocomplemented, where the pseudocomplement of y relative to z, noted y ⇒ z
is max{x|x ∧ y ≤ z} , for all x, y, z ∈ A.

(2) A Heyting algebra is a relatively pseudocomplemented lattice with lower bounded
(with 0).

3. Upper sets in residuated lattices

Let A be a residuated lattice, x ∈ A. We denote the upper set of x by U(x) = {z ∈
A | z ≥ x}. It is easy to see that:

Proposition 3.1. Let A be a residuated lattice, and let x, y ∈ A. Then

(1) x ≤ y if and only if U(y) ⊆ U(x),

(2) x = y if and only if U(x) = U(y).

Proposition 3.2. In any residuated lattice A, the following conditions are equiva-
lent:
(1)A is G(RL)-algebra,

(2)U(x) = U(x2), for all x ∈ A,

(3)U(x) =< x >, for all x ∈ A.

Theorem 3.3. Let A be a residuated lattice and UA = {U(x) | x ∈ A}, then
(UA,⊆) is a lattice and we have U(x) ∧ U(y) = U(x) ∩ U(y) = U(x ∨ y) and
U(x) ∨ U(y) = U(x ∧ y)

Proof. As easy check shows that U(x)∩U(y) = U(x∨ y). Hence U(x)∩U(y) ∈ UA

and we get U(x) ∧ U(y) = U(x) ∩ U(y) = U(x ∨ y). Also we have x ∧ y ≤ x, y.
By Proposition 3.1, U(x), U(y) ⊆ U(x ∧ y). Now let U(x), U(y) ⊆ U(z), for some
z ∈ A. Then z ≤ x, z ≤ y. Hence z ≤ x ∧ y and so U(x ∧ y) ⊆ U(z). Therefore
U(x) ∨ U(y) = U(x ∧ y).�

By the above theorem and Proposition 3.1, we get:

Corollary 3.4. In any residuated lattice A and for all x, y ∈ A: U(x)∩U(y) = {1}
if and only if x ∨ y = 1.
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Theorem 3.5. U(x) ⊆ U(y) ⇀ U(z) implies U(x)∧U(y) ⊆ U(z) , for all x, y, z ∈ A,
where U(y) ⇀ U(z) := U(y → z) and A is a residuated lattice.

Proof. Let U(x) ⊆ U(y) → U(z), for x, y, z ∈ A. Then U(x) ⊆ U(y → z). By
Proposition 3.1 and Lemma 2.1, z ≤ y → z ≤ x ≤ x ∨ y . Therefore by Theorem
3.3, U(x) ∩ U(y) = U(x ∨ y) ⊆ U(z).�

By the following example we get the converse of Theorem 3.5 is not true:

Example 1. Let A = {0, a, b, 1}. Define ∗ and → as follow:

∗ 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then (A,∧,∨, ∗,→ 0, 1) is a residuated lattice. U(a) = {a, b, 1}, U(b) = {b, 1}, U(1) =
{1}. Then we get U(a) ∧ U(1) ⊆ U(b) but U(a) ̸⊆ U(1) → U(b).

Remark 3.6. It is to be noted, generally, (UA,∧,∨,→, U(1), U(0)) is not a Heyting
algebra.

Lemma 3.7. Let A be a residuated lattice. The following conditions are equivalent:

(1) A is G(RL)-algebra,

(2) z → (y → x) = (z → y) → (z → x), for all x, y, z ∈ A.
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Proof. (1 ⇒ 2): Let A be G(RL)-algebra then x = x2, for all x ∈ A. Hence
x → (x → y) = x2 → y = x → y, for all x, y ∈ A and so by Lemma 2.1, we have

(z → (y → x)) → ((z → y) → (z → x)) =

(z → (y → x)) → ((z → y) → (z → (z → x)) ≥

(z → (y → x)) → (y → (z → x) =

(z → (y → x)) → (z → (y → x)) = 1
Hence z → (y → x) ≤ (z → y) → (z → x). On the other hand by Lemma 2.1, we
have y ≤ z → y and so zy ≤ z(z → y). Then
(z → y) → (z → x) = z(z → y) → x ≤ zy → x = z → (y → x). Therefore
z → (y → x) = (z → y) → (z → x)

(2 ⇒ 1): Let z → (y → x) = (z → y) → (z → x), for all x, y, z ∈ A. Now let
x ∈ A then
1 = x → (x → x2) = (x → x) → (x → x2) = x → x2. Then we get x = x2.
Therefore A is G(RL)-algebra. �

Theorem 3.8. Let ∆ = (A,→, ∗,∧,∨, 0, 1) be a residuated lattice and ∆GT =
(UA,⇀,U(1)), where for U(x), U(y) ∈ UA, U(x) ⇀ U(y) := U(x → y). Then the
following conditions are equivalent

(1) ∆ is G(RL)-algebra ,

(2) ∆GT is GT -algebra.

Proof. At first we note that if U(x1) = U(x2) and U(y1) = U(y2) then by Proposi-
tion 3.1, we get x1 = x2, y1 = y2. Hence U(x1) ⇀ U(y1) = U(x1 → y1) = U(x2 →
y2) = U(x2) ⇀ U(y2). Therefore ⇀ is well defined.

(1 ⇒ 2): Let ∆ be G(RL)-algebra. By Lemma 3.7, z → (y → x) = (z → y) → (z →
x), for all x, y, z ∈ A. Then (T1), (T2) and (T3) hold because:

(T1): U(1) ⇀ U(x) = U(1 → x) = U(x),

(T2): U(x) ⇀ U(x) = U(x → x) = U(1),

(T3): U(z) ⇀ (U(y) ⇀ U(x)) = U(z → (y → x))

= U((z → y) → (z → x))

= (U(z) ⇀ U(y)) ⇀ (U(z) ⇀ U(x))
Hence ∆GT is GT -algebra.
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(2 ⇒ 1): Let ∆GT be GT -algebra. By (T3) we have,

U(z) ⇀ (U(y) ⇀ U(x)) = (U(z) ⇀ (y)) ⇀ (U(z) ⇀ U(x)), for all x, y, z ∈ A.

Hence we get U(z → (y → x)) = U((z → y) → (z → x)). By Proposition 3.1, we get
z → (y → x) = (z → y) → (z → x). Using Lemma 3.7, we get ∆ is G(RL)-algebra.�

Remark 3.9. Using Theorem 3.3, the set of upper sets of A is closed with respect
to finite intersection, but is not closed with respect to finite union:

Example 2. Let A = {0, a, b, c, 1}. Define ∗ and → as follow:

∗ 0 a b c 1
0 0 0 0 0 0
a 0 a a a a
b 0 a b a b
c 0 a a c c
1 0 a b c 1

→ 0 a b c 1
0 1 1 1 1 1
a 0 1 1 1 1
b 0 c 1 c 1
c 0 b b 1 1
1 0 a b c 1

Then (A,∧,∨, ∗,→, 0, 1) is a residuated lattice. We have U(a) = {a, b, c, 1}, U(b) =
{b, 1}, U(c) = {c, 1}, U(1) = {1}, U(0) = A.
Then U(b) ∪ U(c) = {b, c, 1} and U(b) ∪ U(c) ̸= U(x), for all x ∈ A.

In the following, we see every filter is the union of upper sets of x where x ∈ F , but
the converse is not true:

Theorem 3.10. Let F be a filter of residuated lattice A. Then

F =
∪

{U(x) | x ∈ F}.

Proof. Let F be a filter of residuated lattice A and x ∈ F . We have x ≤ x and so
x ∈ U(x). Hence

F ⊆
∪

{U(x) | x ∈ F}.
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Now let x ∈
∪
{U(x) | x ∈ F}, then there exist y ∈ F such that x ∈ U(y).

Hence y ≤ x and since y ∈ F we get x ∈ F . Therefore∪
{U(x) | x ∈ F} ⊆ F.�

Remark 3.11. Note that the converse of the above theorem dose not hold.
Consider A = ([0, 1], ∗,⇒,min,max, 0, 1) where x ∗ y = max(0, x + y − 1) and
x ⇒ y = min(1, 1 − x + y), and let F = [1/2, 1]. An easy check shows that A is a
residuated lattice and F =

∪
{U(x) | x ∈ F} = U(1/2). However F is not a filter:

in fact it is not closed under ∗ (for example 1/2 ∗ 1/2 = 0).

By the above theorem we get:

Corollary 3.12. If F is a filter of residuated lattice A, then U(x) ⊆ F , for all x ∈ F .

It is to be noted that if we use upper sets of x ∗ y instead of upper sets of x then
the converse of the Theorem 3.10 holds:

Theorem 3.13. Let F be a subset of residuated lattice A. Then F is a filter of A
if and only if F =

∪
{U(x ∗ y) | x, y ∈ F}.

Proof. Let F be a filter of A. We have,

F =
∪

{U(x) | x ∈ F} ⊆
∪

{U(x ∗ y) | x, y ∈ F}

Now let a ∈
∪
{U(x∗y) | x, y ∈ F}. Then there exist b, c ∈ F such that a ∈ U(b∗ c),

hence b ∗ c ≤ a. Since b, c ∈ F we get a ∈ F .
Conversely, let F be a subset of A such that F =

∪
{U(x∗y) | x, y ∈ F}. Obviously,

1 ∈
∪
{U(x ∗ y) | x, y ∈ F} = F . Let a, b ∈ A be such that a, a → b ∈ F . Since

a ∗ (a → b) = a ∧ b ≤ b, hence b ∈ U(a ∗ (a → b)). Then b ∈
∪
{U(x ∗ y) | x, y ∈

F} = F , that is, F is a filter of A.�

Using proof of the above theorem we get:

Corollary 3.14. Let F be a subset of residuated lattice A. Then F is a filter of A
if and only if U(x ∗ y) ⊆ F for all x, y ∈ F .

Theorem 3.15. Let A be a residuated lattice. Then
(1) A is a G(RL)-algebra if and only if U(x) is a filter, for all x ∈ A.

(2) A is a Boolean algebra if and only if U(x) is a Boolean filter, for all x ∈ A.

Proof.(1) Let A be G(RL)-algebra and x ∈ A. Obviously, 1 ∈ U(x). Consider
a, a → b ∈ U(x). Hence x → a = 1 and x → (a → b) = 1. Using Theorem 2.3, {1}
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is a G-filter of A and so {1} is a positive implicative filter. Therefore x → b = 1.
This means b ∈ U(x). Thus U(x) is a filter of A.
Conversely, let U(x) be a filter, for all x ∈ A. We have x → (x → x2) = 1 and
x → x = 1, hence x → x2 ∈ U(x) and x ∈ U(x), for all x ∈ A. Since U(x) is a filter,
x2 ∈ U(x). Therefore x2 = x and so A is a G(RL)-algebra.
(2) Let A be a Boolean algebra and x ∈ A. Hence A is a G(RL)-algebra. Using part

(1) and Theorem 2.3, U(x) is a Boolean filter. Conversely, let U(x) be a Boolean
filter, for all x ∈ A. Since (x → y) → x ∈ U((x → y) → x) and U((x → y) → x) is
a Boolean filter, by Theorem 2.3 we get x ∈ A((x → y) → x), for all x, y ∈ A. Then
(x → y) → x ≤ x. Using Lemma 2.1, x ≤ (x → y) → x. Hence x = (x → y) → x,
for all x, y ∈ A and so A is a Boolean algebra.

Example 3. Let A = {0, a, b, 1}. Define ∗ and → as follow:

∗ 0 a b 1
0 0 0 0 0
a 0 0 0 a
b 0 0 a b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a b 1 1 1
b a b 1 1
1 0 a b 1

Then (A,∧,∨, ∗,→, 0, 1) is a residuated lattice but is not a G(RL)-algebra and
U(a) = {a, b, 1} is not a filter.

Theorem 3.16. Let A be a G(RL)-algebra. Then y ∈ U(x) if and only if U(x) =
U(x ∗ y), for all x, y ∈ A .

Proof. Let A be a G(RL)-algebra and y ∈ U(x). It is clear that U(x) ⊆ U(x ∗ y).
Now let z ∈ U(x ∗ y): since A is G(RL)-algebra, using Lemma 3.7 we get

x → z = 1 → (x → z) = (x → y) → (x → z) = x → (y → z) = (x ∗ y) → z = 1.

This means z ≥ x and so z ∈ U(x). Therefore U(x ∗ y) ⊆ U(x).
Conversely, let U(x) = U(x ∗ y). Since x ∗ y ≤ y, then y ∈ U(x ∗ y) = U(x).�

By the above Theorem we get:
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Corollary 3.17. Let A be a G(RL)-algebra. For all x, y ∈ A we have

y ̸∈ U(x) if and only if U(x) ⊂ U(x ∗ y).

Example 4. In Example 1, we have A is a G(RL)-algebra and

c ̸∈ U(b) = {b, 1} and U(c) = {c, 1} ⊂ U(b ∗ c) = {a, b, c, 1}.

Example 5. Let A = {0, a, b, c, d, 1}. Define ∗ and → as follows:

∗ 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

→ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then (A,∧,∨, ∗,→ 0, 1) is a residuated lattice, but is not a G(RL)-algebra.
We get U(d) ⊂ U(a ∗ d) but a ∈ U(d).

4. The Krull dimension of a residuated lattice

Definition 4.1. Let A be a residuated lattice, and

Λ : F0 = {1} ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn = A

be a chain of distinct filters in A. If n is finite we say that Λ is a finite chain in A
and n is the length of Λ. Otherwise, Λ is called to be an infinite chain in A.�

Definition 4.2. We define

Krull dimension of A = Max {n | n is length of an chain of distinct filters in A}
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and denoted by Kdim(A). The chain of distinct filters with the maximal length is
called a maximal chain of distinct filters in A.

We recall a residuated lattice A is called simple if its only filters are {1} and
A. It is easy to see that:

Proposition 4.3. Let A be a residuated lattice and let F be a filter of A. Then

(1) Kdim(A) = 1 if and only if A is a simple residuated lattice.

(2) F is a maximal filter if and only if KdimA/F = 1.

A proper filter F of residuated lattice A is called an obstinate filter if x, y ̸∈ F imply
x → y ∈ F and y → x ∈ F [1]. Following [1], every obstinate filter is maximal filter.
Hence we get:

Corollary 4.4. If F is an obstinate filter of residuated lattice A then KdimA/F =
1.

The next example shows that the converse of the above theorem is not true.

Example 6. In Example 1, F = {b, 1} is a filter. It is easy to see thatKdimA/F = 1
but F is not an obstinate filter.

Remark 4.5. Let A and B be two residuated lattices and let us consider A×B the
residuated lattices product of A and B. If F1, F2 are filters of A and B respectively
then F1 × F2 is a filter of A× B and, conversely, any filter of A× B is of the form
F1 × F2; where F1, F2 are filters of A and B respectively [10].

Theorem 4.6. Let A and B be two residuated lattices and let KdimA = m,
KdimB = n. Then Kdim(A×B) = KdimA+KdimB.

Proof. If A or B have an infinite chain then it is straightforward A × B has an
infinite chain and so Kdim(A × B) = KdimA + KdimB. Now let A and B have
no infinite chain and KdimA = m ≥ KdimB = n. Then there exist two maximal
chains Λ : F0 = {1} ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fm = A and Λ

′
: G0 = {1} ⊂ G1 ⊂

G2 ⊂ ... ⊂ Gn = B of distinct filters in A and B, respectively. Now we consider the
following chain of distinct filters in A×B:
{1} × {1} = F0 ×G0 ⊂ F1 ×G0 ⊂ F1 ×G1 ⊂ F2 ×G1 ⊂ ... ⊂ Fn ×Gn = Fn ×B ⊂
Fn+1 ×B ⊂ Fn+2 ×B ⊂ ... ⊂ Fm ×B = A×B.
Hence Kdim(A×B) ≥ 2n+m−n = m+n. Let Kdim(A×B) = z > m+n. Then

there exists a chain of distinct filters in A×B : {1}×{1} = H
′
0 ⊂ H

′
1 ⊂ .... ⊂ H

′
z =

A×B.
Using the above remark there exist filters {1} = I0, I1, ..., Iz = A and {1} =
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J0, J1, ..., Jz = B of A and B, respectively such that H
′
i = Ii × Ji, for all 0 ≤ i ≤ z.

Now consider Γ = {i | Ii = Ii+1}. We note that Ii ⊆ Ii+1, for all 1 ≤ i ≤ z.
Using KdimA = m < z we get Γ ̸= ∅ and Card(Γ) ≥ z −m. Let Ii = Ii+1, since

H
′
i ⊂ H

′
i+1 we get Ji ⊂ Ji+1. Hence there exists a chain such that

{1} = K0 ⊂ K1 ⊂ ... ⊂ Kt = B, where Ki ∈ {J0, J1, ..., Jz = B} for all 0 ≤ i ≤ t
and t = Card(Γ). But this is a contradiction since t ≥ z −m > n = KdimB.�

Theorem 4.7. If F and G are filters of residuated lattices of A and B, respectively
then KdimA×B/F ×G = KdimA/F +KdimB/G.

Proof. We define φ : A × B −→ A/F × B/G such that φ(a, b) = ([a], [b]). It is
easy to see that φ is well-defined, onto homomorphism and kerφ = F × G. Using
the Homomorphism Theorem we get A × B/F × G ∼= A/F × B/G. By the above
theorem KdimA×B/F ×G = KdimA/F +KdimB/G.�

In the following, we concentrate on G(RL)-algebras.

Theorem 4.8. Let A be G(RL)-algebra. Then Kdim(A) = n if and only if there
exists a maximal chain of distinct upper sets in A as follows

U(1) = {1} ⊂ U(x1) ⊂ U(x1 ∗ x2) ⊂ ... ⊂ U(x1 ∗ x2 ∗ ... ∗ xn) = A,

for some x1, x2, ..., xn ∈ A.

Proof. Let Kdim(A) = n then there exists a maximal chain

Λ : F0 = {1} ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fn = A

of distinct filters in A. We have F0 = {1} = U(1). Since F0 = {1} ⊂ F1, then
there exist x1 ∈ F1 such that x1 ̸= 1. Since F1 is a filter by Corollary 3.12, we
get F0 = {1} ⊂ U(x1) ⊆ F1. By Theorem 3.15, U(x1) is a filter. If F1 ̸= U(x1),
this contradicts to the maximality and so F1 = U(x1). Now since F1 ⊂ F2, there
exist x2 ∈ F2 − F1. Then F1 = U(x1) ⊂ U(x1 ∗ x2) ⊆ F2 (we note that x1, x2 ∈ F
and so x1 ∗ x2 ∈ F .) . Since U(x1 ∗ x2) is a filter, if F2 ̸= U(x1 ∗ x2), this
contradicts to the maximality and so F2 = U(x1 ∗ x2). Continuing this process we
get Fk = U(x1 ∗ x2 ∗ ... ∗ xk), for some x1, x2, ..., xk ∈ A.
Hence there exist x1, x2, ..., xk ∈ A such that Fk = U(x1 ∗ x2 ∗ ... ∗ xk), for all
1 ≤ k ≤ n. Therefore there exists a maximal chain of distinct filters in A as follows

U(1) = {1} ⊂ U(x1) ⊂ U(x1 ∗ x2) ⊂ ... ⊂ U(x1 ∗ x2 ∗ ... ∗ xn) = A

Conversely, let Λ :U(1) = {1} ⊂ U(x1) ⊂ U(x1 ∗ x2) ⊂ ... ⊂ U(x1 ∗ x2 ∗ ... ∗ xn) =
A be a maximal chain of distinct upper sets in A. Since A is G(RL)-algebra,
U(x1 ∗ x2 ∗ ... ∗ xn) is a filter of A and so KdimA ≥ n. Now let KdimA = m.
Then we get there exists a chain of distinct upper sets in A as follows
U(1) = {1} ⊂ U(y1) ⊂ U(y1 ∗ y2) ⊂ ... ⊂ U(y1 ∗ y2 ∗ ... ∗ ym) = A
Since Λ is a maximal chain of distinct upper sets in A we get n ≥ m. Therefore
n = m.�
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Conclusion and future research
In this paper, we defined the notion of upper sets in residuated lattices. We studied
the connection between filters and upper sets in residuated lattices. We proved a
residuated lattice is a (Boolean algebra) G(RL)-algbrea if and if every upper set in
residuated lattice is a (Boolean filter) filter. At last we defined the Krull dimension
of residuated lattices and proved a maximal chain of distinct filters, in fact, is a
maximal chain of distinct upper sets on G(RL)-algbreas.
In our future work, we are going to develop the properties of the Krull dimension
of residuated lattices and find useful results on other structures. We hope this work
would serve as a foundation for further studies on the structure of residuated lattices
and develop corresponding many-valued logical systems.
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